|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
base_model: cointegrated/rubert-tiny |
|
model-index: |
|
- name: test_trainer |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# test_trainer |
|
|
|
This model is a fine-tuned version of [cointegrated/rubert-tiny](https://huggingface.co/cointegrated/rubert-tiny) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7461 |
|
- Accuracy: 0.8310 |
|
|
|
## How to use: |
|
```python |
|
# themes = ['баги', 'открытие', 'баланс', 'рейтинг', 'ревизия', 'другое'] |
|
|
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
model_name = 'wyluilipe/wb-themes-classification' |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = BertForSequenceClassification.from_pretrained(model_name, num_labels=i+1) |
|
|
|
text = "программа не работает" |
|
encoded_input = tokenizer(text, return_tensors='pt') |
|
|
|
with torch.no_grad(): |
|
output = model(**encoded_input) |
|
probabilities = torch.nn.functional.softmax(output.logits, dim=-1) |
|
predicted_class = torch.argmax(probabilities).item() |
|
``` |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 1.0 | 60 | 0.7383 | 0.8404 | |
|
| No log | 2.0 | 120 | 0.8743 | 0.7840 | |
|
| No log | 3.0 | 180 | 0.7312 | 0.8169 | |
|
| No log | 4.0 | 240 | 0.6733 | 0.8404 | |
|
| No log | 5.0 | 300 | 0.7612 | 0.7981 | |
|
| No log | 6.0 | 360 | 0.7671 | 0.8122 | |
|
| No log | 7.0 | 420 | 0.7306 | 0.8263 | |
|
| No log | 8.0 | 480 | 0.7523 | 0.8263 | |
|
| 0.1118 | 9.0 | 540 | 0.7645 | 0.8263 | |
|
| 0.1118 | 10.0 | 600 | 0.7461 | 0.8310 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.1 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|