lunar lander tuned, 1e6 timesteps, params: {'n_steps': 4096, 'n_epochs': 20, 'discount_factor_gamma': 0.999}
Browse files- README.md +1 -1
- config.json +1 -1
- lunar v2.zip +2 -2
- lunar v2/data +22 -22
- lunar v2/policy.optimizer.pth +1 -1
- lunar v2/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value: 251.
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 251.93 +/- 10.85
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f348bb2ddc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f348bb2de50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f348bb2dee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f348bb2df70>", "_build": "<function ActorCriticPolicy._build at 0x7f348bb32040>", "forward": "<function ActorCriticPolicy.forward at 0x7f348bb320d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f348bb32160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f348bb321f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f348bb32280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f348bb32310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f348bb323a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f348bb30090>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652225217.3119054, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAByYDxSrRQ+1A/CO3uPiL7yJO08FvSSvAAAAAAAAAAAM969PdIwlD8Bnj4+hbnIvh3Buz2TOT89AAAAAAAAAAAznfU8e3yHut4e+7tngYo8cCPputaIcT0AAIA/AACAP828+ruZOqA+QXIZPu0tqL7+YKc9LlkHvAAAAAAAAAAAAKHIvdl6uT624QI+DueXvgiDgzyqKDs9AAAAAAAAAADNdlQ+W3frvG0YpLq+aUM5B7RZvrjV3zkAAIA/AACAPzpBUT5fHiw/7iOMvU3csr4IKx89ttIAvQAAAAAAAAAAuiaRvhiAaz8zE7u88VmGvvB1c75Ad589AAAAAAAAAAAatgs9PR0lu/NR0LwakHo8OahIPPtuWb0AAIA/AACAP2YqOzy4T/+7ohKlu9T6jjzRM1g9LgNvvQAAgD8AAIA/AJgFPjNOsj939Q4/CR2VvhJ+7D26PYA+AAAAAAAAAADGWxM+thU8P46egr0b2I++b1RmPbeOir0AAAAAAAAAAMDR3L23Up0/WtQRv4mk175FDua80PjUvQAAAAAAAAAAE0WPvrqbGj9JwCg+gBKHvr91lb3ajXk8AAAAAAAAAAAmXMQ9w2UXOcSAJjzvzqo8uq8eOt5ajzsAAIA/AACAP83EPbuz7LU/CiyWvtHh6z6QVVw7kxCIPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIryR5rm/6cECUhpRSlIwBbJRNHQGMAXSUR0CGuQAJ9iMHdX2UKGgGaAloD0MIDRmPUgkhS0CUhpRSlGgVS+1oFkdAhrw212JSBXV9lChoBmgJaA9DCOZ1xCGbDXFAlIaUUpRoFU0gAWgWR0CGvFtgKF7EdX2UKGgGaAloD0MIJCu/DAa9ckCUhpRSlGgVTUcBaBZHQIa8lPxhDw91fZQoaAZoCWgPQwjtZHCUvOJvQJSGlFKUaBVNSwFoFkdAhr0CVSn+AHV9lChoBmgJaA9DCEJ6ihwif29AlIaUUpRoFU1xAWgWR0CGvjn7HhjwdX2UKGgGaAloD0MInwWhvI+5cECUhpRSlGgVTS4BaBZHQIa+bzND+it1fZQoaAZoCWgPQwi0O6QYoINuQJSGlFKUaBVNaQFoFkdAhr8OJtSAH3V9lChoBmgJaA9DCIl+bf10oW9AlIaUUpRoFU06AWgWR0CGv5KAavRrdX2UKGgGaAloD0MIUKvoD02bcUCUhpRSlGgVTUwBaBZHQIa/xNVR1ox1fZQoaAZoCWgPQwjUtfY+1cduQJSGlFKUaBVNJQFoFkdAhr/YG2TgVHV9lChoBmgJaA9DCA4sR8jAIHBAlIaUUpRoFU0jAWgWR0CGv+LORkmQdX2UKGgGaAloD0MIsyPVd37wbUCUhpRSlGgVTSgBaBZHQIbAHhZQpF11fZQoaAZoCWgPQwjtZdtpq0BwQJSGlFKUaBVNFQFoFkdAhsDRIre67XV9lChoBmgJaA9DCEQV/gxvDXJAlIaUUpRoFU0SAWgWR0CGwZthuwX7dX2UKGgGaAloD0MI1sQCX5HIcUCUhpRSlGgVTTcBaBZHQIbCcs189fV1fZQoaAZoCWgPQwiUTbnC+2NwQJSGlFKUaBVNGQFoFkdAhsL96sySFHV9lChoBmgJaA9DCCjv42gOK3JAlIaUUpRoFU0pAWgWR0CGxwL0Bfa6dX2UKGgGaAloD0MI9KeN6vTwb0CUhpRSlGgVTQoBaBZHQIbHWgYgq3F1fZQoaAZoCWgPQwhQqRJlryFwQJSGlFKUaBVNOgFoFkdAhseWYv38GnV9lChoBmgJaA9DCLxa7swEb29AlIaUUpRoFU1IAWgWR0CGyBX/5tWNdX2UKGgGaAloD0MIZED2erfncUCUhpRSlGgVTSsBaBZHQIbJCvcJtzl1fZQoaAZoCWgPQwhI3GPpQ45wQJSGlFKUaBVNTwFoFkdAhsktLcsUZnV9lChoBmgJaA9DCD/EBgsnc2xAlIaUUpRoFU0hAWgWR0CGyiq94/u9dX2UKGgGaAloD0MICfmgZ3P8cUCUhpRSlGgVTS0BaBZHQIbKV7F85S51fZQoaAZoCWgPQwjKwtfXOvpvQJSGlFKUaBVNRwFoFkdAhsrZzo2XLXV9lChoBmgJaA9DCPflzHYFvm5AlIaUUpRoFU0tAWgWR0CGyvX7Lt/ndX2UKGgGaAloD0MIj8TL0/lSckCUhpRSlGgVTT4BaBZHQIbLNaUzKtB1fZQoaAZoCWgPQwg6dlCJ6ytyQJSGlFKUaBVNQwFoFkdAhstMcp9ZzXV9lChoBmgJaA9DCOP74lLVknFAlIaUUpRoFU1OAWgWR0CGzZIatLcsdX2UKGgGaAloD0MIweRGkbVacECUhpRSlGgVTXgBaBZHQIbOAkPczqN1fZQoaAZoCWgPQwjk+QyoN5JwQJSGlFKUaBVNYwFoFkdAhs9b0e2d/nV9lChoBmgJaA9DCM0FLo91ZnFAlIaUUpRoFU11AWgWR0CG0NRAKOT8dX2UKGgGaAloD0MIYVERp5NgcUCUhpRSlGgVTSQBaBZHQIbSZwjt5Ut1fZQoaAZoCWgPQwhdaoR+JtlwQJSGlFKUaBVNLQFoFkdAhtKUnXumanV9lChoBmgJaA9DCO91Ul/WknFAlIaUUpRoFU09AWgWR0CG0vSXMQmNdX2UKGgGaAloD0MI98ySAPWucUCUhpRSlGgVTTgBaBZHQIbTqgmJFb51fZQoaAZoCWgPQwh0stR6P2dxQJSGlFKUaBVNFgFoFkdAhtRZpSJj2HV9lChoBmgJaA9DCGNEotByw3FAlIaUUpRoFU1GAWgWR0CG1Q3m3fALdX2UKGgGaAloD0MIqgoNxLIicECUhpRSlGgVTSEBaBZHQIbVZrpJPIp1fZQoaAZoCWgPQwjGia92FMhvQJSGlFKUaBVNWAFoFkdAhtXSPdVNpXV9lChoBmgJaA9DCNukorH2AHJAlIaUUpRoFU1GAWgWR0CG1ozwc5sCdX2UKGgGaAloD0MIRYDTu3iGb0CUhpRSlGgVTUIBaBZHQIbW4UYbbUR1fZQoaAZoCWgPQwg5tp4hHA5xQJSGlFKUaBVNZQFoFkdAhtcDLjghr3V9lChoBmgJaA9DCPzHQnSIeXBAlIaUUpRoFU1rAWgWR0CG2Ag+QlrudX2UKGgGaAloD0MIm+RH/AqxcECUhpRSlGgVTS4BaBZHQIbZDGT9sJp1fZQoaAZoCWgPQwimnZrLDWlwQJSGlFKUaBVNSgFoFkdAhtuFJYkmhXV9lChoBmgJaA9DCAa7YdsiNXFAlIaUUpRoFU2BAWgWR0CG26Pjn3cpdX2UKGgGaAloD0MIDvW7sPUAcUCUhpRSlGgVTQ4BaBZHQIbcBmukk8l1fZQoaAZoCWgPQwjGbwor1WJxQJSGlFKUaBVNQwFoFkdAhvpbRF7UonV9lChoBmgJaA9DCIZa07zjNAJAlIaUUpRoFU0CAWgWR0CG+m/D+BH1dX2UKGgGaAloD0MIEJTb9j3QcUCUhpRSlGgVTSIBaBZHQIb66oAGSp11fZQoaAZoCWgPQwiSBre1BQJyQJSGlFKUaBVNWQFoFkdAhvyaZQYUFnV9lChoBmgJaA9DCJG4x9KHy21AlIaUUpRoFU0gAWgWR0CG/ZlcQiA2dX2UKGgGaAloD0MID7QCQ1avcUCUhpRSlGgVTQcBaBZHQIb923QUpNN1fZQoaAZoCWgPQwgOT6+UpTpwQJSGlFKUaBVNXgFoFkdAhv5wdsBQvnV9lChoBmgJaA9DCIfguIybe29AlIaUUpRoFU1OAWgWR0CG/oMdcSoPdX2UKGgGaAloD0MI4gD6fX9PcUCUhpRSlGgVTRwBaBZHQIb+vb7CSA91fZQoaAZoCWgPQwhlqIqpdERyQJSGlFKUaBVNUgFoFkdAhv7o+GGmDXV9lChoBmgJaA9DCCNNvAN8anBAlIaUUpRoFU0KAWgWR0CG/zJ8v24/dX2UKGgGaAloD0MIP5EnSdfVckCUhpRSlGgVTT4BaBZHQIb/UHdGiHt1fZQoaAZoCWgPQwjxnZj1YkhNQJSGlFKUaBVL+WgWR0CG/5X/5tWNdX2UKGgGaAloD0MI6fNRRpxrcUCUhpRSlGgVTSIBaBZHQIcC4aNuLrJ1fZQoaAZoCWgPQwjObi2TISpxQJSGlFKUaBVNEQFoFkdAhwNxyXD3unV9lChoBmgJaA9DCDz03a2srm5AlIaUUpRoFU0WAWgWR0CHBDqeK8+SdX2UKGgGaAloD0MIblLRWHvxcUCUhpRSlGgVTUYBaBZHQIcEaJVKf4B1fZQoaAZoCWgPQwhMjjulA21uQJSGlFKUaBVNaAFoFkdAhwYTsQd0aXV9lChoBmgJaA9DCFddh2pKHEhAlIaUUpRoFU0CAWgWR0CHBjxAB1cMdX2UKGgGaAloD0MIq8spATEOckCUhpRSlGgVTSoBaBZHQIcGvT7VJ+V1fZQoaAZoCWgPQwho6+Bg7/xvQJSGlFKUaBVNOAFoFkdAhwjNmlImPnV9lChoBmgJaA9DCE1Iawx603BAlIaUUpRoFU0bAWgWR0CHCVcCYCyRdX2UKGgGaAloD0MIXB5rRob6cECUhpRSlGgVTTUBaBZHQIcJYyM1jy51fZQoaAZoCWgPQwiqKjQQy2BxQJSGlFKUaBVNPQFoFkdAhwnFnAZbZHV9lChoBmgJaA9DCKLuA5Da329AlIaUUpRoFU1IAWgWR0CHCq55JK8MdX2UKGgGaAloD0MIu9QI/czoa0CUhpRSlGgVTVsBaBZHQIcLK8jAzpJ1fZQoaAZoCWgPQwj2lQfpKQFxQJSGlFKUaBVNTwFoFkdAhwvWIoE0SHV9lChoBmgJaA9DCN80fXZAk25AlIaUUpRoFU1pAWgWR0CHDGHt4RmLdX2UKGgGaAloD0MIGcdI9oiGb0CUhpRSlGgVTRYBaBZHQIcPPL3bmEJ1fZQoaAZoCWgPQwgLQ+T0dZ5uQJSGlFKUaBVNMwFoFkdAhw9xO+IuXnV9lChoBmgJaA9DCCld+pekxm1AlIaUUpRoFU08AWgWR0CHEI3z+WGAdX2UKGgGaAloD0MIRE5fz1fPbkCUhpRSlGgVTSQBaBZHQIcRvH1e0HB1fZQoaAZoCWgPQwj9+EuLOglxQJSGlFKUaBVNHwFoFkdAhxITP0I1L3V9lChoBmgJaA9DCHkEN1I2M21AlIaUUpRoFU0xAWgWR0CHEh4ZdfLLdX2UKGgGaAloD0MIkX77OjCfcECUhpRSlGgVTS4BaBZHQIcVJyMkyDZ1fZQoaAZoCWgPQwheE9IaA1hvQJSGlFKUaBVNOAFoFkdAhxWjmCAc1nV9lChoBmgJaA9DCBFV+DN85XBAlIaUUpRoFU07AWgWR0CHFizNUwSKdX2UKGgGaAloD0MIgqrRqwFVckCUhpRSlGgVTScBaBZHQIcWVKIznA91fZQoaAZoCWgPQwgTDr3Fg59yQJSGlFKUaBVNYwFoFkdAhxbNhVlwtXV9lChoBmgJaA9DCKJFtvM9A3JAlIaUUpRoFU0cAWgWR0CHFxQQ+UyIdX2UKGgGaAloD0MI3/3xXjV7cECUhpRSlGgVTToBaBZHQIcXdgOSW7h1fZQoaAZoCWgPQwi0keum1J5xQJSGlFKUaBVNRgFoFkdAhxkaLfk3j3V9lChoBmgJaA9DCCMsKuJ04EpAlIaUUpRoFUvbaBZHQIcafSF49ox1fZQoaAZoCWgPQwh4mWGjLL1sQJSGlFKUaBVNLQFoFkdAhxsV9ORDC3V9lChoBmgJaA9DCKOQZFbvxHFAlIaUUpRoFU1PAWgWR0CHHCcXFcY7dX2UKGgGaAloD0MIilbuBWYCcUCUhpRSlGgVTTgBaBZHQIcchzgdfb91fZQoaAZoCWgPQwiu78NBgr9xQJSGlFKUaBVNKgFoFkdAhx1tSZSeiHV9lChoBmgJaA9DCHIUIApmgXBAlIaUUpRoFU1SAWgWR0CHHrYs/Y8MdX2UKGgGaAloD0MIucFQhxWETECUhpRSlGgVS+BoFkdAhx9yXdCVr3V9lChoBmgJaA9DCA+AuKtXimFAlIaUUpRoFU3oA2gWR0CHH6VtXPqtdX2UKGgGaAloD0MI5ueGpuyLcECUhpRSlGgVTQ4BaBZHQIcgPrGBFux1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-generic-x86_64-with-glibc2.10 #123~18.04.1-Ubuntu SMP Fri Apr 8 09:48:52 UTC 2022", "Python": "3.8.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0", "GPU Enabled": "True", "Numpy": "1.21.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe35681aca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe35681ad30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe35681adc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe35681ae50>", "_build": "<function ActorCriticPolicy._build at 0x7fe35681aee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe35681af70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe356820040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe3568200d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe356820160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe3568201f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe356820280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe356810f90>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1048576, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652309059.889863, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3dojw3sKw/6asYPo6orr43KyM9ngq7PQAAAAAAAAAAGrT5veZ86z6yiNA84BeNvmQZYb3PkKk8AAAAAAAAAAANBbK99pwkugO0r7qPfty1tFauur/QyTkAAIA/AACAP00K1L1cg0C6DiAWu+YWNbUW8Uq5fnIsOgAAgD8AAIA/TYBEvSk0PbpOD4o8BXIrNoL9G7vboSQ1AACAPwAAgD9aVey9H/2Wud6O1Dmz57k2UN2qO4LT/7gAAIA/AACAPyBARr57F7y8LgbEvGlpTbuBXSg+/5kfPAAAgD8AAIA/JimDPXtyhbq1i+g5t29JtXwwWTrmjQS5AACAPwAAgD/Nei28H42mudPdYbynL+W6HcCtu7fOyDsAAIA/AAAAAGb4PzzhbJa6vd18O8k9STasEBi6S5yPugAAgD8AAIA/M8ZYvSloGLrSZ1c7o7BGNlCIqbrYeD41AACAPwAAgD/NSBQ8KWgqujBhXDxXwqE1KCuqu2THqTQAAIA/AACAP2awEbx7KqC6ov9qPKrlMLaXG0k7HjgctQAAgD8AAIA/ms2qvEgDrrq42n073KxhNhUldrpWqJC6AACAPwAAgD86/BW+/ypWP4a1w7h0N5S+Ax/EvRaFkz0AAAAAAAAAADPVe7zxhXk/5iZbvSczxr7U0sS7SEtRvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+l5DcFwxV0CUhpRSlIwBbJRN6AOMAXSUR0CDImw5/9YPdX2UKGgGaAloD0MIJxdjYJ0/YECUhpRSlGgVTegDaBZHQIMk3/Lkjop1fZQoaAZoCWgPQwjN6EfDKelfQJSGlFKUaBVN6ANoFkdAgyceDWbw0HV9lChoBmgJaA9DCGpPyTmxYFxAlIaUUpRoFU3oA2gWR0CDJ6jO9nK5dX2UKGgGaAloD0MIB35Uw35pYECUhpRSlGgVTegDaBZHQIMqpMi8nNR1fZQoaAZoCWgPQwhxBKkUOxtjQJSGlFKUaBVN6ANoFkdAgzCSjYZl4HV9lChoBmgJaA9DCH/cfvlkamZAlIaUUpRoFU3oA2gWR0CDMd8pCrtFdX2UKGgGaAloD0MI+yE2WDhJWkCUhpRSlGgVTegDaBZHQIMzkJhOP/91fZQoaAZoCWgPQwjECyJS0wlYQJSGlFKUaBVN6ANoFkdAgzrbnPmganV9lChoBmgJaA9DCIVdFD3whGJAlIaUUpRoFU3oA2gWR0CDRGlgtvn9dX2UKGgGaAloD0MIJ79FJ0ubUcCUhpRSlGgVTfcBaBZHQINLpPwd8zB1fZQoaAZoCWgPQwjobAGhdRFgQJSGlFKUaBVN6ANoFkdAg0zareZXuHV9lChoBmgJaA9DCFCOAkTBO2RAlIaUUpRoFU3oA2gWR0CDTt8iwB5pdX2UKGgGaAloD0MIQbrYtFI8RECUhpRSlGgVTegDaBZHQINRsUwi7kJ1fZQoaAZoCWgPQwhh4Ln38M1gQJSGlFKUaBVN6ANoFkdAg14Ihpxm03V9lChoBmgJaA9DCHqp2JjXiGJAlIaUUpRoFU3oA2gWR0CDZAH+IdlvdX2UKGgGaAloD0MIOZz51RwNXECUhpRSlGgVTegDaBZHQINqfjdYW+J1fZQoaAZoCWgPQwh8Kqc9JcVGQJSGlFKUaBVLqWgWR0CDbBiiItUXdX2UKGgGaAloD0MIVu9wOzS1X0CUhpRSlGgVTegDaBZHQINvXkDIRyx1fZQoaAZoCWgPQwj11yssOEdiQJSGlFKUaBVN6ANoFkdAg3Gjbah6B3V9lChoBmgJaA9DCK/RcqCH5l1AlIaUUpRoFU3oA2gWR0CDdCNFz+3pdX2UKGgGaAloD0MIPSgoRSuPW0CUhpRSlGgVTegDaBZHQIN3VDa4+bF1fZQoaAZoCWgPQwhjey3ovVtZQJSGlFKUaBVN6ANoFkdAg32YoZydWnV9lChoBmgJaA9DCNFY+zvbJV5AlIaUUpRoFU3oA2gWR0CDfwDtgKF7dX2UKGgGaAloD0MI5BBxc6p4YECUhpRSlGgVTegDaBZHQIOA3+ZPVNJ1fZQoaAZoCWgPQwjPMLWlDgthQJSGlFKUaBVN6ANoFkdAg4icriEQG3V9lChoBmgJaA9DCG9kHvkDSGBAlIaUUpRoFU3oA2gWR0CDklbB42S/dX2UKGgGaAloD0MIhq+vdanvXECUhpRSlGgVTegDaBZHQIOZf6O5rgx1fZQoaAZoCWgPQwjjx5i7Fo9kQJSGlFKUaBVN6ANoFkdAg5qzN2TxG3V9lChoBmgJaA9DCFH2lnK+2WJAlIaUUpRoFU3oA2gWR0CDnKRJ2+wldX2UKGgGaAloD0MI9zx/2qjTX0CUhpRSlGgVTegDaBZHQIOfbspobn51fZQoaAZoCWgPQwgtQrEVNPZnQJSGlFKUaBVN6ANoFkdAg7Lue8PFvXV9lChoBmgJaA9DCLX+lgD8WWJAlIaUUpRoFU3oA2gWR0CEOEuJUHY6dX2UKGgGaAloD0MIK0zfawgwX0CUhpRSlGgVTegDaBZHQIQ6FRUFSsN1fZQoaAZoCWgPQwjueJPfotxhQJSGlFKUaBVN6ANoFkdAhD2J+MIeHXV9lChoBmgJaA9DCIhJuJDHQ2BAlIaUUpRoFU3oA2gWR0CEP+HzH0btdX2UKGgGaAloD0MI2ZdsPNgKX0CUhpRSlGgVTegDaBZHQIRCiQNkOI91fZQoaAZoCWgPQwhBZ9Km6gRZQJSGlFKUaBVN6ANoFkdAhEWb83uNP3V9lChoBmgJaA9DCBu7RPVWbWBAlIaUUpRoFU3oA2gWR0CES9y3CsOodX2UKGgGaAloD0MIblLRWHs9ZECUhpRSlGgVTegDaBZHQIRNTKs+3Yt1fZQoaAZoCWgPQwjwwtZs5YJjQJSGlFKUaBVN6ANoFkdAhE9KEOAiFHV9lChoBmgJaA9DCN1dZ0N+R2FAlIaUUpRoFU3oA2gWR0CEVzN6gM+edX2UKGgGaAloD0MIOWOYE7TJOkCUhpRSlGgVS/doFkdAhGAECFK02XV9lChoBmgJaA9DCCGU93G0JGFAlIaUUpRoFU3oA2gWR0CEYNshPj4pdX2UKGgGaAloD0MId0zdld15Y0CUhpRSlGgVTegDaBZHQIRoO+RHPNV1fZQoaAZoCWgPQwg1QdR9AEBgQJSGlFKUaBVN6ANoFkdAhGluk1uR93V9lChoBmgJaA9DCCntDb4wqGNAlIaUUpRoFU3oA2gWR0CEa09pRGc4dX2UKGgGaAloD0MI0xdCznuBZkCUhpRSlGgVTegDaBZHQIRuDaZhKDl1fZQoaAZoCWgPQwirCDcZVRdgQJSGlFKUaBVN6ANoFkdAhIFpJf6XSnV9lChoBmgJaA9DCBDrjVphb2FAlIaUUpRoFU3oA2gWR0CEiK85CF9KdX2UKGgGaAloD0MIdELooMvUYkCUhpRSlGgVTegDaBZHQISKdO2y9mJ1fZQoaAZoCWgPQwgcCwqDMqJkQJSGlFKUaBVN6ANoFkdAhI3Uz0pVj3V9lChoBmgJaA9DCLBUF/AyvWFAlIaUUpRoFU3oA2gWR0CEkCgA6uGLdX2UKGgGaAloD0MIbLOxEvOLYkCUhpRSlGgVTegDaBZHQISS04o7V8V1fZQoaAZoCWgPQwidTNwqCOdiQJSGlFKUaBVN6ANoFkdAhJYZ6Uqx1XV9lChoBmgJaA9DCFrZPuStSWNAlIaUUpRoFU3oA2gWR0CEnNZeRgZ1dX2UKGgGaAloD0MI8uzyrQ+CYUCUhpRSlGgVTegDaBZHQISgbmW+oLp1fZQoaAZoCWgPQwiVRPZBFtFjQJSGlFKUaBVN6ANoFkdAhKkMJpnHvXV9lChoBmgJaA9DCBZRE30+4WNAlIaUUpRoFU3oA2gWR0CEswt+TeO5dX2UKGgGaAloD0MI4Zo7+l9qYUCUhpRSlGgVTegDaBZHQISz3duYQat1fZQoaAZoCWgPQwitpuuJrvZeQJSGlFKUaBVN6ANoFkdAhLs35N47inV9lChoBmgJaA9DCGHfTiLCB2FAlIaUUpRoFU3oA2gWR0CEvGeEIw/QdX2UKGgGaAloD0MI7Z+nAYO8YECUhpRSlGgVTegDaBZHQIS+TGgi/wl1fZQoaAZoCWgPQwj/kenQ6bVgQJSGlFKUaBVN6ANoFkdAhMEHGS6lL3V9lChoBmgJaA9DCEmfVtGfTWFAlIaUUpRoFU3oA2gWR0CE071LamGedX2UKGgGaAloD0MIhv90A4VoYECUhpRSlGgVTegDaBZHQITbA3FUADJ1fZQoaAZoCWgPQwjdJ0cBIl9iQJSGlFKUaBVN6ANoFkdAhNyzhxYJV3V9lChoBmgJaA9DCH/ZPXnY6mFAlIaUUpRoFU3oA2gWR0CE4BHkLhJidX2UKGgGaAloD0MIvAUSFD+dW0CUhpRSlGgVTegDaBZHQITiaFCb+cZ1fZQoaAZoCWgPQwigTnl0I8ZgQJSGlFKUaBVN6ANoFkdAhOUqgZjx1HV9lChoBmgJaA9DCJj8T/5uQmBAlIaUUpRoFU3oA2gWR0CE6Kppeu3ddX2UKGgGaAloD0MIH5268lk8ZUCUhpRSlGgVTegDaBZHQITvgQ+UyHp1fZQoaAZoCWgPQwitoj80c7dhQJSGlFKUaBVN6ANoFkdAhPMI9TxXn3V9lChoBmgJaA9DCFPovMYubFlAlIaUUpRoFU3oA2gWR0CE+7v3rUsndX2UKGgGaAloD0MIC7d8JCUZYkCUhpRSlGgVTegDaBZHQIUFaj+Jgst1fZQoaAZoCWgPQwhNDwpKURZmQJSGlFKUaBVN6ANoFkdAhQY+pwS8J3V9lChoBmgJaA9DCDrMlxfgKGBAlIaUUpRoFU3oA2gWR0CFDa9Oh0yQdX2UKGgGaAloD0MIHhX/d8TuY0CUhpRSlGgVTegDaBZHQIUO1/2Cdz51fZQoaAZoCWgPQwj5Eb9iDQtiQJSGlFKUaBVN6ANoFkdAhRC9bgTAWXV9lChoBmgJaA9DCJxQiIBDcEtAlIaUUpRoFU3oA2gWR0CFE39aUzKtdX2UKGgGaAloD0MIeh1xyAb0WkCUhpRSlGgVTegDaBZHQIUlsaMrEtN1fZQoaAZoCWgPQwhgyyvX26VjQJSGlFKUaBVN6ANoFkdAhSyNtQ9A5nV9lChoBmgJaA9DCBwkRPmC8ltAlIaUUpRoFU3oA2gWR0CFLjuivgWKdX2UKGgGaAloD0MINZcbDHVsY0CUhpRSlGgVTegDaBZHQIUxYvSMLnd1fZQoaAZoCWgPQwgyc4HL47FkQJSGlFKUaBVN6ANoFkdAhTN+yquKXXV9lChoBmgJaA9DCL1WQnfJPmVAlIaUUpRoFU3oA2gWR0CFNc3KB/ZvdX2UKGgGaAloD0MIWeAruvU5YUCUhpRSlGgVTegDaBZHQIU4ooG6f8N1fZQoaAZoCWgPQwgxXB0AcYphQJSGlFKUaBVN6ANoFkdAhT7WMKkVOHV9lChoBmgJaA9DCP+ye/KwGV9AlIaUUpRoFU3oA2gWR0CFQj+5vtMPdX2UKGgGaAloD0MIyJQPQdURZkCUhpRSlGgVTegDaBZHQIVKMZzgdfd1fZQoaAZoCWgPQwh6OIHptA9bQJSGlFKUaBVN6ANoFkdAhVOmKAJ9iXV9lChoBmgJaA9DCLE1W3nJC11AlIaUUpRoFU3oA2gWR0CFVHjLjghsdX2UKGgGaAloD0MIgJ2bNmNYYkCUhpRSlGgVTegDaBZHQIVbdJDmbLF1fZQoaAZoCWgPQwhmvoOfuGRgQJSGlFKUaBVN6ANoFkdAhVyOjASFoXV9lChoBmgJaA9DCHNH/8u1iGNAlIaUUpRoFU3oA2gWR0CFXkUjcEeRdX2UKGgGaAloD0MIXYb/dAPoV0CUhpRSlGgVTegDaBZHQIVgwkqtozx1fZQoaAZoCWgPQwiSs7CnnZdkQJSGlFKUaBVN6ANoFkdAhXNMYdhiLHV9lChoBmgJaA9DCKERbFz/hFVAlIaUUpRoFU3oA2gWR0CFevaFmFrVdX2UKGgGaAloD0MIKh2s/3NwZECUhpRSlGgVTegDaBZHQIV8umaYu011fZQoaAZoCWgPQwi+E7NejFpnQJSGlFKUaBVN6ANoFkdAhYAss6JZXHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 320, "n_steps": 4096, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-generic-x86_64-with-glibc2.10 #123~18.04.1-Ubuntu SMP Fri Apr 8 09:48:52 UTC 2022", "Python": "3.8.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0", "GPU Enabled": "True", "Numpy": "1.21.5", "Gym": "0.21.0"}}
|
lunar v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d11a3e267228f99186cff466212740d9e051570b6580f736c8bf3f0d89fd149
|
3 |
+
size 144261
|
lunar v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 0,
|
22 |
"policy_kwargs": {},
|
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
"_total_timesteps": 1000000.0,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,34 +56,34 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
-
":serialized:": "
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
-
"n_steps":
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
-
"batch_size":
|
86 |
-
"n_epochs":
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe35681aca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe35681ad30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe35681adc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe35681ae50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe35681aee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe35681af70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe356820040>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe3568200d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe356820160>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe3568201f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe356820280>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fe356810f90>"
|
20 |
},
|
21 |
"verbose": 0,
|
22 |
"policy_kwargs": {},
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 1048576,
|
46 |
"_total_timesteps": 1000000.0,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1652309059.889863,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3dojw3sKw/6asYPo6orr43KyM9ngq7PQAAAAAAAAAAGrT5veZ86z6yiNA84BeNvmQZYb3PkKk8AAAAAAAAAAANBbK99pwkugO0r7qPfty1tFauur/QyTkAAIA/AACAP00K1L1cg0C6DiAWu+YWNbUW8Uq5fnIsOgAAgD8AAIA/TYBEvSk0PbpOD4o8BXIrNoL9G7vboSQ1AACAPwAAgD9aVey9H/2Wud6O1Dmz57k2UN2qO4LT/7gAAIA/AACAPyBARr57F7y8LgbEvGlpTbuBXSg+/5kfPAAAgD8AAIA/JimDPXtyhbq1i+g5t29JtXwwWTrmjQS5AACAPwAAgD/Nei28H42mudPdYbynL+W6HcCtu7fOyDsAAIA/AAAAAGb4PzzhbJa6vd18O8k9STasEBi6S5yPugAAgD8AAIA/M8ZYvSloGLrSZ1c7o7BGNlCIqbrYeD41AACAPwAAgD/NSBQ8KWgqujBhXDxXwqE1KCuqu2THqTQAAIA/AACAP2awEbx7KqC6ov9qPKrlMLaXG0k7HjgctQAAgD8AAIA/ms2qvEgDrrq42n073KxhNhUldrpWqJC6AACAPwAAgD86/BW+/ypWP4a1w7h0N5S+Ax/EvRaFkz0AAAAAAAAAADPVe7zxhXk/5iZbvSczxr7U0sS7SEtRvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+l5DcFwxV0CUhpRSlIwBbJRN6AOMAXSUR0CDImw5/9YPdX2UKGgGaAloD0MIJxdjYJ0/YECUhpRSlGgVTegDaBZHQIMk3/Lkjop1fZQoaAZoCWgPQwjN6EfDKelfQJSGlFKUaBVN6ANoFkdAgyceDWbw0HV9lChoBmgJaA9DCGpPyTmxYFxAlIaUUpRoFU3oA2gWR0CDJ6jO9nK5dX2UKGgGaAloD0MIB35Uw35pYECUhpRSlGgVTegDaBZHQIMqpMi8nNR1fZQoaAZoCWgPQwhxBKkUOxtjQJSGlFKUaBVN6ANoFkdAgzCSjYZl4HV9lChoBmgJaA9DCH/cfvlkamZAlIaUUpRoFU3oA2gWR0CDMd8pCrtFdX2UKGgGaAloD0MI+yE2WDhJWkCUhpRSlGgVTegDaBZHQIMzkJhOP/91fZQoaAZoCWgPQwjECyJS0wlYQJSGlFKUaBVN6ANoFkdAgzrbnPmganV9lChoBmgJaA9DCIVdFD3whGJAlIaUUpRoFU3oA2gWR0CDRGlgtvn9dX2UKGgGaAloD0MIJ79FJ0ubUcCUhpRSlGgVTfcBaBZHQINLpPwd8zB1fZQoaAZoCWgPQwjobAGhdRFgQJSGlFKUaBVN6ANoFkdAg0zareZXuHV9lChoBmgJaA9DCFCOAkTBO2RAlIaUUpRoFU3oA2gWR0CDTt8iwB5pdX2UKGgGaAloD0MIQbrYtFI8RECUhpRSlGgVTegDaBZHQINRsUwi7kJ1fZQoaAZoCWgPQwhh4Ln38M1gQJSGlFKUaBVN6ANoFkdAg14Ihpxm03V9lChoBmgJaA9DCHqp2JjXiGJAlIaUUpRoFU3oA2gWR0CDZAH+IdlvdX2UKGgGaAloD0MIOZz51RwNXECUhpRSlGgVTegDaBZHQINqfjdYW+J1fZQoaAZoCWgPQwh8Kqc9JcVGQJSGlFKUaBVLqWgWR0CDbBiiItUXdX2UKGgGaAloD0MIVu9wOzS1X0CUhpRSlGgVTegDaBZHQINvXkDIRyx1fZQoaAZoCWgPQwj11yssOEdiQJSGlFKUaBVN6ANoFkdAg3Gjbah6B3V9lChoBmgJaA9DCK/RcqCH5l1AlIaUUpRoFU3oA2gWR0CDdCNFz+3pdX2UKGgGaAloD0MIPSgoRSuPW0CUhpRSlGgVTegDaBZHQIN3VDa4+bF1fZQoaAZoCWgPQwhjey3ovVtZQJSGlFKUaBVN6ANoFkdAg32YoZydWnV9lChoBmgJaA9DCNFY+zvbJV5AlIaUUpRoFU3oA2gWR0CDfwDtgKF7dX2UKGgGaAloD0MI5BBxc6p4YECUhpRSlGgVTegDaBZHQIOA3+ZPVNJ1fZQoaAZoCWgPQwjPMLWlDgthQJSGlFKUaBVN6ANoFkdAg4icriEQG3V9lChoBmgJaA9DCG9kHvkDSGBAlIaUUpRoFU3oA2gWR0CDklbB42S/dX2UKGgGaAloD0MIhq+vdanvXECUhpRSlGgVTegDaBZHQIOZf6O5rgx1fZQoaAZoCWgPQwjjx5i7Fo9kQJSGlFKUaBVN6ANoFkdAg5qzN2TxG3V9lChoBmgJaA9DCFH2lnK+2WJAlIaUUpRoFU3oA2gWR0CDnKRJ2+wldX2UKGgGaAloD0MI9zx/2qjTX0CUhpRSlGgVTegDaBZHQIOfbspobn51fZQoaAZoCWgPQwgtQrEVNPZnQJSGlFKUaBVN6ANoFkdAg7Lue8PFvXV9lChoBmgJaA9DCLX+lgD8WWJAlIaUUpRoFU3oA2gWR0CEOEuJUHY6dX2UKGgGaAloD0MIK0zfawgwX0CUhpRSlGgVTegDaBZHQIQ6FRUFSsN1fZQoaAZoCWgPQwjueJPfotxhQJSGlFKUaBVN6ANoFkdAhD2J+MIeHXV9lChoBmgJaA9DCIhJuJDHQ2BAlIaUUpRoFU3oA2gWR0CEP+HzH0btdX2UKGgGaAloD0MI2ZdsPNgKX0CUhpRSlGgVTegDaBZHQIRCiQNkOI91fZQoaAZoCWgPQwhBZ9Km6gRZQJSGlFKUaBVN6ANoFkdAhEWb83uNP3V9lChoBmgJaA9DCBu7RPVWbWBAlIaUUpRoFU3oA2gWR0CES9y3CsOodX2UKGgGaAloD0MIblLRWHs9ZECUhpRSlGgVTegDaBZHQIRNTKs+3Yt1fZQoaAZoCWgPQwjwwtZs5YJjQJSGlFKUaBVN6ANoFkdAhE9KEOAiFHV9lChoBmgJaA9DCN1dZ0N+R2FAlIaUUpRoFU3oA2gWR0CEVzN6gM+edX2UKGgGaAloD0MIOWOYE7TJOkCUhpRSlGgVS/doFkdAhGAECFK02XV9lChoBmgJaA9DCCGU93G0JGFAlIaUUpRoFU3oA2gWR0CEYNshPj4pdX2UKGgGaAloD0MId0zdld15Y0CUhpRSlGgVTegDaBZHQIRoO+RHPNV1fZQoaAZoCWgPQwg1QdR9AEBgQJSGlFKUaBVN6ANoFkdAhGluk1uR93V9lChoBmgJaA9DCCntDb4wqGNAlIaUUpRoFU3oA2gWR0CEa09pRGc4dX2UKGgGaAloD0MI0xdCznuBZkCUhpRSlGgVTegDaBZHQIRuDaZhKDl1fZQoaAZoCWgPQwirCDcZVRdgQJSGlFKUaBVN6ANoFkdAhIFpJf6XSnV9lChoBmgJaA9DCBDrjVphb2FAlIaUUpRoFU3oA2gWR0CEiK85CF9KdX2UKGgGaAloD0MIdELooMvUYkCUhpRSlGgVTegDaBZHQISKdO2y9mJ1fZQoaAZoCWgPQwgcCwqDMqJkQJSGlFKUaBVN6ANoFkdAhI3Uz0pVj3V9lChoBmgJaA9DCLBUF/AyvWFAlIaUUpRoFU3oA2gWR0CEkCgA6uGLdX2UKGgGaAloD0MIbLOxEvOLYkCUhpRSlGgVTegDaBZHQISS04o7V8V1fZQoaAZoCWgPQwidTNwqCOdiQJSGlFKUaBVN6ANoFkdAhJYZ6Uqx1XV9lChoBmgJaA9DCFrZPuStSWNAlIaUUpRoFU3oA2gWR0CEnNZeRgZ1dX2UKGgGaAloD0MI8uzyrQ+CYUCUhpRSlGgVTegDaBZHQISgbmW+oLp1fZQoaAZoCWgPQwiVRPZBFtFjQJSGlFKUaBVN6ANoFkdAhKkMJpnHvXV9lChoBmgJaA9DCBZRE30+4WNAlIaUUpRoFU3oA2gWR0CEswt+TeO5dX2UKGgGaAloD0MI4Zo7+l9qYUCUhpRSlGgVTegDaBZHQISz3duYQat1fZQoaAZoCWgPQwitpuuJrvZeQJSGlFKUaBVN6ANoFkdAhLs35N47inV9lChoBmgJaA9DCGHfTiLCB2FAlIaUUpRoFU3oA2gWR0CEvGeEIw/QdX2UKGgGaAloD0MI7Z+nAYO8YECUhpRSlGgVTegDaBZHQIS+TGgi/wl1fZQoaAZoCWgPQwj/kenQ6bVgQJSGlFKUaBVN6ANoFkdAhMEHGS6lL3V9lChoBmgJaA9DCEmfVtGfTWFAlIaUUpRoFU3oA2gWR0CE071LamGedX2UKGgGaAloD0MIhv90A4VoYECUhpRSlGgVTegDaBZHQITbA3FUADJ1fZQoaAZoCWgPQwjdJ0cBIl9iQJSGlFKUaBVN6ANoFkdAhNyzhxYJV3V9lChoBmgJaA9DCH/ZPXnY6mFAlIaUUpRoFU3oA2gWR0CE4BHkLhJidX2UKGgGaAloD0MIvAUSFD+dW0CUhpRSlGgVTegDaBZHQITiaFCb+cZ1fZQoaAZoCWgPQwigTnl0I8ZgQJSGlFKUaBVN6ANoFkdAhOUqgZjx1HV9lChoBmgJaA9DCJj8T/5uQmBAlIaUUpRoFU3oA2gWR0CE6Kppeu3ddX2UKGgGaAloD0MIH5268lk8ZUCUhpRSlGgVTegDaBZHQITvgQ+UyHp1fZQoaAZoCWgPQwitoj80c7dhQJSGlFKUaBVN6ANoFkdAhPMI9TxXn3V9lChoBmgJaA9DCFPovMYubFlAlIaUUpRoFU3oA2gWR0CE+7v3rUsndX2UKGgGaAloD0MIC7d8JCUZYkCUhpRSlGgVTegDaBZHQIUFaj+Jgst1fZQoaAZoCWgPQwhNDwpKURZmQJSGlFKUaBVN6ANoFkdAhQY+pwS8J3V9lChoBmgJaA9DCDrMlxfgKGBAlIaUUpRoFU3oA2gWR0CFDa9Oh0yQdX2UKGgGaAloD0MIHhX/d8TuY0CUhpRSlGgVTegDaBZHQIUO1/2Cdz51fZQoaAZoCWgPQwj5Eb9iDQtiQJSGlFKUaBVN6ANoFkdAhRC9bgTAWXV9lChoBmgJaA9DCJxQiIBDcEtAlIaUUpRoFU3oA2gWR0CFE39aUzKtdX2UKGgGaAloD0MIeh1xyAb0WkCUhpRSlGgVTegDaBZHQIUlsaMrEtN1fZQoaAZoCWgPQwhgyyvX26VjQJSGlFKUaBVN6ANoFkdAhSyNtQ9A5nV9lChoBmgJaA9DCBwkRPmC8ltAlIaUUpRoFU3oA2gWR0CFLjuivgWKdX2UKGgGaAloD0MINZcbDHVsY0CUhpRSlGgVTegDaBZHQIUxYvSMLnd1fZQoaAZoCWgPQwgyc4HL47FkQJSGlFKUaBVN6ANoFkdAhTN+yquKXXV9lChoBmgJaA9DCL1WQnfJPmVAlIaUUpRoFU3oA2gWR0CFNc3KB/ZvdX2UKGgGaAloD0MIWeAruvU5YUCUhpRSlGgVTegDaBZHQIU4ooG6f8N1fZQoaAZoCWgPQwgxXB0AcYphQJSGlFKUaBVN6ANoFkdAhT7WMKkVOHV9lChoBmgJaA9DCP+ye/KwGV9AlIaUUpRoFU3oA2gWR0CFQj+5vtMPdX2UKGgGaAloD0MIyJQPQdURZkCUhpRSlGgVTegDaBZHQIVKMZzgdfd1fZQoaAZoCWgPQwh6OIHptA9bQJSGlFKUaBVN6ANoFkdAhVOmKAJ9iXV9lChoBmgJaA9DCLE1W3nJC11AlIaUUpRoFU3oA2gWR0CFVHjLjghsdX2UKGgGaAloD0MIgJ2bNmNYYkCUhpRSlGgVTegDaBZHQIVbdJDmbLF1fZQoaAZoCWgPQwhmvoOfuGRgQJSGlFKUaBVN6ANoFkdAhVyOjASFoXV9lChoBmgJaA9DCHNH/8u1iGNAlIaUUpRoFU3oA2gWR0CFXkUjcEeRdX2UKGgGaAloD0MIXYb/dAPoV0CUhpRSlGgVTegDaBZHQIVgwkqtozx1fZQoaAZoCWgPQwiSs7CnnZdkQJSGlFKUaBVN6ANoFkdAhXNMYdhiLHV9lChoBmgJaA9DCKERbFz/hFVAlIaUUpRoFU3oA2gWR0CFevaFmFrVdX2UKGgGaAloD0MIKh2s/3NwZECUhpRSlGgVTegDaBZHQIV8umaYu011fZQoaAZoCWgPQwi+E7NejFpnQJSGlFKUaBVN6ANoFkdAhYAss6JZXHVlLg=="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 320,
|
79 |
+
"n_steps": 4096,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 256,
|
86 |
+
"n_epochs": 20,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
lunar v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84893
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:151e78cf26b770d2ee2a35a0af7913563133fd10770e0aeaa82955c9c99bf952
|
3 |
size 84893
|
lunar v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:57783b70fca61255e0843f514adc8ac85ceeb90f5bba724e555bea75d9aa435b
|
3 |
size 43201
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:963df5cfd7d7cf775fa69828c9aeaf890b506cfbb685ebe7c9601bba6ca7879e
|
3 |
+
size 257715
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": 251.
|
|
|
1 |
+
{"mean_reward": 251.9312990813747, "std_reward": 10.849563742207437, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T23:56:13.346845"}
|