lunar lander tuned, 1e6 timesteps, params: {'n_steps': 1024, 'n_epochs': 5, 'discount_factor_gamma': 0.999}
Browse files- README.md +1 -1
- config.json +1 -1
- lunar v2.zip +3 -0
- lunar v2/_stable_baselines3_version +1 -0
- lunar v2/data +94 -0
- lunar v2/policy.optimizer.pth +3 -0
- lunar v2/policy.pth +3 -0
- lunar v2/pytorch_variables.pth +3 -0
- lunar v2/system_info.txt +7 -0
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 251.92 +/- 22.08
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3f9c65b430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3f9c65b4c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3f9c65b550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3f9c65b5e0>", "_build": "<function ActorCriticPolicy._build at 0x7f3f9c65b670>", "forward": "<function ActorCriticPolicy.forward at 0x7f3f9c65b700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3f9c65b790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3f9c65b820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3f9c65b8b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3f9c65b940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3f9c65b9d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3f9c65a8a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652033554.0259454, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHNBmL0pDhQ7zt3puqwGoLxRvni7DalfvQAAAAAAAAAAAA4XPmBHsT5dY8i9SP2Gvj7URr1oCU+9AAAAAAAAAAAANOG7PfopuZ4pD7tu7mw8osxcu01sT70AAIA/AACAP9o9s70psF269azCuvamFbnLBQG6bQDhOQAAgD8AAIA/2nKxPYmeQz7once9/DAuvhJEMbzQSV48AAAAAAAAAAAzO2277NHwuSkni7zClJU57FAOO/mtC7kAAIA/AACAPwBMdry43qo4em2Ruit8DDxpKG87os4xOgAAAAAAAIA/DR0EPvFnsT56iOK9MhOnvhwMNj0pWao9AAAAAAAAAADmIgG9CpdyOC2TPDsiA0q8z/3yOzm3jjwAAAAAAAAAAOaDp70U9Ok9ABbbPYRQhr5urpU9jxMQvgAAAAAAAAAAzYbBPLgmibtCX6Y8oqULvgfiHr3DpvO+AACAPwAAgD/A9Vw+T7FIP+PZ3j25ZM2+YxaLPhrcUL4AAAAAAAAAAI1shD2kdAs6eKUDvedqSr21/y68GsczPgAAgD8AAAAAGhsMPttq7D5mTuS9icdxvuSYW7019V89AAAAAAAAAABmhP+928qQPxPwNL57z5W+bBqJvpIeFbwAAAAAAAAAADOFX7y7Wqw9LEqhveHsVL791dy8qbdHvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDkqYaXuGbkCUhpRSlIwBbJRNRwGMAXSUR0CPae0VJtiydX2UKGgGaAloD0MIIlUUr7L8b0CUhpRSlGgVTTIBaBZHQI9rWTX8O091fZQoaAZoCWgPQwjQmbSpeqByQJSGlFKUaBVL/2gWR0CPa1qGDcubdX2UKGgGaAloD0MIs9E5P8UhcUCUhpRSlGgVTUIBaBZHQI9rW5xzaK11fZQoaAZoCWgPQwjTad0Gdf1wQJSGlFKUaBVNMwFoFkdAj2uY6GQCCHV9lChoBmgJaA9DCJ54zhZQT3JAlIaUUpRoFU0xAWgWR0CPbDrjYI0JdX2UKGgGaAloD0MIWI6QgTxFTkCUhpRSlGgVS8hoFkdAj2w7m2b5M3V9lChoBmgJaA9DCKWGNgDbs3FAlIaUUpRoFU01AWgWR0CPbJeCTUy6dX2UKGgGaAloD0MIwFq1awKKcECUhpRSlGgVTS4BaBZHQI9wru0CzTp1fZQoaAZoCWgPQwg8akyIuZFvQJSGlFKUaBVNRQFoFkdAj3DQjMV1wHV9lChoBmgJaA9DCJFEL6PYSG9AlIaUUpRoFU0vAWgWR0CPcXkpZwGXdX2UKGgGaAloD0MIxyk6kgvPcECUhpRSlGgVTRgBaBZHQI9zEpAlfJF1fZQoaAZoCWgPQwjKayV01/xwQJSGlFKUaBVNYwFoFkdAj3NdJjDsMXV9lChoBmgJaA9DCJPlJJT+LXFAlIaUUpRoFU1CAWgWR0CPdUEFGG21dX2UKGgGaAloD0MIAfbRqes4ckCUhpRSlGgVTSsBaBZHQI+QrJOnEVF1fZQoaAZoCWgPQwjnNXaJKnRwQJSGlFKUaBVNQwFoFkdAj5GEDQqqfnV9lChoBmgJaA9DCD6V054S6HBAlIaUUpRoFU0kAWgWR0CPkf2FnIyTdX2UKGgGaAloD0MIvyzt1JwRcUCUhpRSlGgVTSYBaBZHQI+SFjEvTPV1fZQoaAZoCWgPQwiAf0qV6DZyQJSGlFKUaBVNCQFoFkdAj5JyJTER8XV9lChoBmgJaA9DCEELCRjdTHBAlIaUUpRoFU04AWgWR0CPkslchTwVdX2UKGgGaAloD0MIIjXtYhq1bUCUhpRSlGgVTTgBaBZHQI+TCZ6Uqx11fZQoaAZoCWgPQwj61Rwg2HRxQJSGlFKUaBVNLAFoFkdAj5NHymQ8wHV9lChoBmgJaA9DCAZoW826nm1AlIaUUpRoFU1VAWgWR0CPlLUVi4KAdX2UKGgGaAloD0MIhxkaT8SmcECUhpRSlGgVTS0BaBZHQI+YH2Cdz4l1fZQoaAZoCWgPQwjnOSLfpZttQJSGlFKUaBVNKAFoFkdAj5inP/rB03V9lChoBmgJaA9DCBpNLsbAm1hAlIaUUpRoFU3oA2gWR0CPmVAcDKYBdX2UKGgGaAloD0MIy59vC9aZckCUhpRSlGgVTUYBaBZHQI+ZXFYMfA91fZQoaAZoCWgPQwhQUIpWrtVxQJSGlFKUaBVNOAFoFkdAj5rgflp48nV9lChoBmgJaA9DCLYUkPZ/FXBAlIaUUpRoFU1DAWgWR0CPm5EIgNgCdX2UKGgGaAloD0MI9fQR+IPxcECUhpRSlGgVTQQBaBZHQI+cWmP5pJx1fZQoaAZoCWgPQwhiSE4m7qBwQJSGlFKUaBVNGAFoFkdAj5zCIcinpHV9lChoBmgJaA9DCKLvbmWJGG1AlIaUUpRoFU0jAWgWR0CPnaTyJ9ApdX2UKGgGaAloD0MIisvxCsSFckCUhpRSlGgVTSUBaBZHQI+eDwjMV1x1fZQoaAZoCWgPQwhJgnAFVLJwQJSGlFKUaBVNNgFoFkdAj59XM6ij+XV9lChoBmgJaA9DCAbWcfzQ+25AlIaUUpRoFU1UAWgWR0CPoEvcrRShdX2UKGgGaAloD0MINJwyN9/EbkCUhpRSlGgVTUoBaBZHQI+gdbPhQ3x1fZQoaAZoCWgPQwihndMs0MZwQJSGlFKUaBVNigFoFkdAj6CS3kPtlnV9lChoBmgJaA9DCLDL8J8uCHJAlIaUUpRoFU2iAWgWR0CPoNWattALdX2UKGgGaAloD0MIjxt+N93XcUCUhpRSlGgVTT8BaBZHQI+haLqD9O11fZQoaAZoCWgPQwhSmWIOAoFuQJSGlFKUaBVNEAFoFkdAj6MCwSrYG3V9lChoBmgJaA9DCNEfmnnyrG5AlIaUUpRoFU0vAWgWR0CPo69eQdS3dX2UKGgGaAloD0MIpnwIqoY+ckCUhpRSlGgVTRcBaBZHQI+j0fgaWHF1fZQoaAZoCWgPQwgcYOY7+NpwQJSGlFKUaBVNOgFoFkdAj6UFl9SdfHV9lChoBmgJaA9DCFYsflOYu3BAlIaUUpRoFU0OAWgWR0CPpV/ustCidX2UKGgGaAloD0MIUz4EVaPCcECUhpRSlGgVTSEBaBZHQI+lcjmjj711fZQoaAZoCWgPQwhEGD+NuwJxQJSGlFKUaBVNIAFoFkdAj6cYYrJ8v3V9lChoBmgJaA9DCDMZjuczqXFAlIaUUpRoFU0WAWgWR0CPqCNGViWndX2UKGgGaAloD0MIA9GTMim4ckCUhpRSlGgVTVABaBZHQI+or+xW1dB1fZQoaAZoCWgPQwhljXqIBnpxQJSGlFKUaBVNBwFoFkdAj6nhf8dgfHV9lChoBmgJaA9DCOGzdXAwP29AlIaUUpRoFU1QAWgWR0CPqfazu4PPdX2UKGgGaAloD0MIrAFKQ42xcUCUhpRSlGgVTTEBaBZHQI+qcGzKLbZ1fZQoaAZoCWgPQwjk1qTbEqU/QJSGlFKUaBVL5mgWR0CPq5ipeeFtdX2UKGgGaAloD0MIKXtLOV/Ab0CUhpRSlGgVTT8BaBZHQI+r1g4Otnx1fZQoaAZoCWgPQwhIbk26LREfQJSGlFKUaBVL3WgWR0CPrCHxBmf5dX2UKGgGaAloD0MIzZTW39L+cECUhpRSlGgVTToBaBZHQI+s7xgAp8Z1fZQoaAZoCWgPQwiCqWbWkhtwQJSGlFKUaBVNewFoFkdAj65wVbiZOXV9lChoBmgJaA9DCNx/ZDo0XHBAlIaUUpRoFU13AWgWR0CPrpeb/ffodX2UKGgGaAloD0MIsYo3Mo9tcUCUhpRSlGgVTTQBaBZHQI+vQuoP07N1fZQoaAZoCWgPQwjNO07RkXFwQJSGlFKUaBVNLQFoFkdAj7BYfwI+n3V9lChoBmgJaA9DCBuADYgQwUlAlIaUUpRoFU0EAWgWR0CPsPLL6k6+dX2UKGgGaAloD0MIzCiWW5rAcUCUhpRSlGgVTTgBaBZHQI+xGGIsRQJ1fZQoaAZoCWgPQwiLcf4mFKNuQJSGlFKUaBVNPgFoFkdAj7Fd4NZvDXV9lChoBmgJaA9DCAXhCijU9nFAlIaUUpRoFU0SAWgWR0CPsjYFJQLvdX2UKGgGaAloD0MIZw5JLRQ/cECUhpRSlGgVTQ4BaBZHQI+zsaS9ugp1fZQoaAZoCWgPQwi1iv7QzKFOQJSGlFKUaBVNAgFoFkdAj7PPBacI7nV9lChoBmgJaA9DCChEwCGU6HFAlIaUUpRoFU0zAWgWR0CPs+sJY1YRdX2UKGgGaAloD0MIGTxM+2YwbkCUhpRSlGgVTVYBaBZHQI+2fDR+jM51fZQoaAZoCWgPQwg+PiE77+ZwQJSGlFKUaBVNMAFoFkdAj85SOBDohnV9lChoBmgJaA9DCKKzzCIUNWxAlIaUUpRoFU0+AmgWR0CP3m3NLUTddX2UKGgGaAloD0MIg6RPq+izYkCUhpRSlGgVTegDaBZHQJADmDHwPRR1fZQoaAZoCWgPQwh1dFyN7LJRQJSGlFKUaBVN6ANoFkdAkAUoRIz3y3V9lChoBmgJaA9DCJuOAG4Wg1JAlIaUUpRoFU3oA2gWR0CQBwg+yJKrdX2UKGgGaAloD0MI7ncoCvQOW0CUhpRSlGgVTegDaBZHQJAHOE8JUo91fZQoaAZoCWgPQwh80R4vpJFdQJSGlFKUaBVN6ANoFkdAkAga5f+junV9lChoBmgJaA9DCLk2VIxzQGFAlIaUUpRoFU3oA2gWR0CQCWsbedkKdX2UKGgGaAloD0MI0EVDxqNVV0CUhpRSlGgVTegDaBZHQJAKF9roGIN1fZQoaAZoCWgPQwiTq1j8poRMQJSGlFKUaBVN6ANoFkdAkApA2Q4jr3V9lChoBmgJaA9DCBTRr62fF1lAlIaUUpRoFU3oA2gWR0CQCoS1E3KkdX2UKGgGaAloD0MIs9DOaRaSX0CUhpRSlGgVTegDaBZHQJALVfQa73B1fZQoaAZoCWgPQwicoiO5/JFUQJSGlFKUaBVN6ANoFkdAkAyltTDO1XV9lChoBmgJaA9DCFNaf0sAvFVAlIaUUpRoFU3oA2gWR0CQDL+L3sX0dX2UKGgGaAloD0MIO1ESEmmNW0CUhpRSlGgVTegDaBZHQJAM079ycTd1fZQoaAZoCWgPQwjqew3BcYxdQJSGlFKUaBVN6ANoFkdAkA5ulfqoqHV9lChoBmgJaA9DCEH0pExq11lAlIaUUpRoFU3oA2gWR0CQDvB7/n4gdX2UKGgGaAloD0MIBMqmXGGSb0CUhpRSlGgVTTABaBZHQJAewG6f8Mx1fZQoaAZoCWgPQwh2xvfFJQlgQJSGlFKUaBVN6ANoFkdAkCOaNZNfxHV9lChoBmgJaA9DCPrS25+L/1FAlIaUUpRoFU3oA2gWR0CQO0/DtPYWdX2UKGgGaAloD0MIDcLc7uV+WkCUhpRSlGgVTegDaBZHQJA9EVRDTjN1fZQoaAZoCWgPQwh+ObNdoQ1eQJSGlFKUaBVN6ANoFkdAkD9DSXt0FXV9lChoBmgJaA9DCOCGGK95BU9AlIaUUpRoFU3oA2gWR0CQP3vsZ5zHdX2UKGgGaAloD0MI5gRtcvi+XkCUhpRSlGgVTegDaBZHQJBAeoddVvN1fZQoaAZoCWgPQwi9OseA7CdRQJSGlFKUaBVN6ANoFkdAkEHREBsAN3V9lChoBmgJaA9DCKES1zEuwWFAlIaUUpRoFU3oA2gWR0CQQooCuEEldX2UKGgGaAloD0MIznFuE276YECUhpRSlGgVTegDaBZHQJBCtc5bQkZ1fZQoaAZoCWgPQwiA0lCjkClcQJSGlFKUaBVN6ANoFkdAkEP2jXWe6XV9lChoBmgJaA9DCBR6/Ul8AlNAlIaUUpRoFU3oA2gWR0CQRWYUWVNYdX2UKGgGaAloD0MIYwtBDkpOVUCUhpRSlGgVTegDaBZHQJBFf/WDpTx1fZQoaAZoCWgPQwh48umxLTthQJSGlFKUaBVN6ANoFkdAkEWSyD7Ik3V9lChoBmgJaA9DCPJ6MCk+gVBAlIaUUpRoFU3oA2gWR0CQRzz19ORDdX2UKGgGaAloD0MIC5sBLshbW0CUhpRSlGgVTegDaBZHQJBHv0qYqoZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-generic-x86_64-with-glibc2.10 #123~18.04.1-Ubuntu SMP Fri Apr 8 09:48:52 UTC 2022", "Python": "3.8.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0", "GPU Enabled": "True", "Numpy": "1.21.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f348bb2ddc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f348bb2de50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f348bb2dee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f348bb2df70>", "_build": "<function ActorCriticPolicy._build at 0x7f348bb32040>", "forward": "<function ActorCriticPolicy.forward at 0x7f348bb320d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f348bb32160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f348bb321f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f348bb32280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f348bb32310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f348bb323a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f348bb30090>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652225217.3119054, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAByYDxSrRQ+1A/CO3uPiL7yJO08FvSSvAAAAAAAAAAAM969PdIwlD8Bnj4+hbnIvh3Buz2TOT89AAAAAAAAAAAznfU8e3yHut4e+7tngYo8cCPputaIcT0AAIA/AACAP828+ruZOqA+QXIZPu0tqL7+YKc9LlkHvAAAAAAAAAAAAKHIvdl6uT624QI+DueXvgiDgzyqKDs9AAAAAAAAAADNdlQ+W3frvG0YpLq+aUM5B7RZvrjV3zkAAIA/AACAPzpBUT5fHiw/7iOMvU3csr4IKx89ttIAvQAAAAAAAAAAuiaRvhiAaz8zE7u88VmGvvB1c75Ad589AAAAAAAAAAAatgs9PR0lu/NR0LwakHo8OahIPPtuWb0AAIA/AACAP2YqOzy4T/+7ohKlu9T6jjzRM1g9LgNvvQAAgD8AAIA/AJgFPjNOsj939Q4/CR2VvhJ+7D26PYA+AAAAAAAAAADGWxM+thU8P46egr0b2I++b1RmPbeOir0AAAAAAAAAAMDR3L23Up0/WtQRv4mk175FDua80PjUvQAAAAAAAAAAE0WPvrqbGj9JwCg+gBKHvr91lb3ajXk8AAAAAAAAAAAmXMQ9w2UXOcSAJjzvzqo8uq8eOt5ajzsAAIA/AACAP83EPbuz7LU/CiyWvtHh6z6QVVw7kxCIPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIryR5rm/6cECUhpRSlIwBbJRNHQGMAXSUR0CGuQAJ9iMHdX2UKGgGaAloD0MIDRmPUgkhS0CUhpRSlGgVS+1oFkdAhrw212JSBXV9lChoBmgJaA9DCOZ1xCGbDXFAlIaUUpRoFU0gAWgWR0CGvFtgKF7EdX2UKGgGaAloD0MIJCu/DAa9ckCUhpRSlGgVTUcBaBZHQIa8lPxhDw91fZQoaAZoCWgPQwjtZHCUvOJvQJSGlFKUaBVNSwFoFkdAhr0CVSn+AHV9lChoBmgJaA9DCEJ6ihwif29AlIaUUpRoFU1xAWgWR0CGvjn7HhjwdX2UKGgGaAloD0MInwWhvI+5cECUhpRSlGgVTS4BaBZHQIa+bzND+it1fZQoaAZoCWgPQwi0O6QYoINuQJSGlFKUaBVNaQFoFkdAhr8OJtSAH3V9lChoBmgJaA9DCIl+bf10oW9AlIaUUpRoFU06AWgWR0CGv5KAavRrdX2UKGgGaAloD0MIUKvoD02bcUCUhpRSlGgVTUwBaBZHQIa/xNVR1ox1fZQoaAZoCWgPQwjUtfY+1cduQJSGlFKUaBVNJQFoFkdAhr/YG2TgVHV9lChoBmgJaA9DCA4sR8jAIHBAlIaUUpRoFU0jAWgWR0CGv+LORkmQdX2UKGgGaAloD0MIsyPVd37wbUCUhpRSlGgVTSgBaBZHQIbAHhZQpF11fZQoaAZoCWgPQwjtZdtpq0BwQJSGlFKUaBVNFQFoFkdAhsDRIre67XV9lChoBmgJaA9DCEQV/gxvDXJAlIaUUpRoFU0SAWgWR0CGwZthuwX7dX2UKGgGaAloD0MI1sQCX5HIcUCUhpRSlGgVTTcBaBZHQIbCcs189fV1fZQoaAZoCWgPQwiUTbnC+2NwQJSGlFKUaBVNGQFoFkdAhsL96sySFHV9lChoBmgJaA9DCCjv42gOK3JAlIaUUpRoFU0pAWgWR0CGxwL0Bfa6dX2UKGgGaAloD0MI9KeN6vTwb0CUhpRSlGgVTQoBaBZHQIbHWgYgq3F1fZQoaAZoCWgPQwhQqRJlryFwQJSGlFKUaBVNOgFoFkdAhseWYv38GnV9lChoBmgJaA9DCLxa7swEb29AlIaUUpRoFU1IAWgWR0CGyBX/5tWNdX2UKGgGaAloD0MIZED2erfncUCUhpRSlGgVTSsBaBZHQIbJCvcJtzl1fZQoaAZoCWgPQwhI3GPpQ45wQJSGlFKUaBVNTwFoFkdAhsktLcsUZnV9lChoBmgJaA9DCD/EBgsnc2xAlIaUUpRoFU0hAWgWR0CGyiq94/u9dX2UKGgGaAloD0MICfmgZ3P8cUCUhpRSlGgVTS0BaBZHQIbKV7F85S51fZQoaAZoCWgPQwjKwtfXOvpvQJSGlFKUaBVNRwFoFkdAhsrZzo2XLXV9lChoBmgJaA9DCPflzHYFvm5AlIaUUpRoFU0tAWgWR0CGyvX7Lt/ndX2UKGgGaAloD0MIj8TL0/lSckCUhpRSlGgVTT4BaBZHQIbLNaUzKtB1fZQoaAZoCWgPQwg6dlCJ6ytyQJSGlFKUaBVNQwFoFkdAhstMcp9ZzXV9lChoBmgJaA9DCOP74lLVknFAlIaUUpRoFU1OAWgWR0CGzZIatLcsdX2UKGgGaAloD0MIweRGkbVacECUhpRSlGgVTXgBaBZHQIbOAkPczqN1fZQoaAZoCWgPQwjk+QyoN5JwQJSGlFKUaBVNYwFoFkdAhs9b0e2d/nV9lChoBmgJaA9DCM0FLo91ZnFAlIaUUpRoFU11AWgWR0CG0NRAKOT8dX2UKGgGaAloD0MIYVERp5NgcUCUhpRSlGgVTSQBaBZHQIbSZwjt5Ut1fZQoaAZoCWgPQwhdaoR+JtlwQJSGlFKUaBVNLQFoFkdAhtKUnXumanV9lChoBmgJaA9DCO91Ul/WknFAlIaUUpRoFU09AWgWR0CG0vSXMQmNdX2UKGgGaAloD0MI98ySAPWucUCUhpRSlGgVTTgBaBZHQIbTqgmJFb51fZQoaAZoCWgPQwh0stR6P2dxQJSGlFKUaBVNFgFoFkdAhtRZpSJj2HV9lChoBmgJaA9DCGNEotByw3FAlIaUUpRoFU1GAWgWR0CG1Q3m3fALdX2UKGgGaAloD0MIqgoNxLIicECUhpRSlGgVTSEBaBZHQIbVZrpJPIp1fZQoaAZoCWgPQwjGia92FMhvQJSGlFKUaBVNWAFoFkdAhtXSPdVNpXV9lChoBmgJaA9DCNukorH2AHJAlIaUUpRoFU1GAWgWR0CG1ozwc5sCdX2UKGgGaAloD0MIRYDTu3iGb0CUhpRSlGgVTUIBaBZHQIbW4UYbbUR1fZQoaAZoCWgPQwg5tp4hHA5xQJSGlFKUaBVNZQFoFkdAhtcDLjghr3V9lChoBmgJaA9DCPzHQnSIeXBAlIaUUpRoFU1rAWgWR0CG2Ag+QlrudX2UKGgGaAloD0MIm+RH/AqxcECUhpRSlGgVTS4BaBZHQIbZDGT9sJp1fZQoaAZoCWgPQwimnZrLDWlwQJSGlFKUaBVNSgFoFkdAhtuFJYkmhXV9lChoBmgJaA9DCAa7YdsiNXFAlIaUUpRoFU2BAWgWR0CG26Pjn3cpdX2UKGgGaAloD0MIDvW7sPUAcUCUhpRSlGgVTQ4BaBZHQIbcBmukk8l1fZQoaAZoCWgPQwjGbwor1WJxQJSGlFKUaBVNQwFoFkdAhvpbRF7UonV9lChoBmgJaA9DCIZa07zjNAJAlIaUUpRoFU0CAWgWR0CG+m/D+BH1dX2UKGgGaAloD0MIEJTb9j3QcUCUhpRSlGgVTSIBaBZHQIb66oAGSp11fZQoaAZoCWgPQwiSBre1BQJyQJSGlFKUaBVNWQFoFkdAhvyaZQYUFnV9lChoBmgJaA9DCJG4x9KHy21AlIaUUpRoFU0gAWgWR0CG/ZlcQiA2dX2UKGgGaAloD0MID7QCQ1avcUCUhpRSlGgVTQcBaBZHQIb923QUpNN1fZQoaAZoCWgPQwgOT6+UpTpwQJSGlFKUaBVNXgFoFkdAhv5wdsBQvnV9lChoBmgJaA9DCIfguIybe29AlIaUUpRoFU1OAWgWR0CG/oMdcSoPdX2UKGgGaAloD0MI4gD6fX9PcUCUhpRSlGgVTRwBaBZHQIb+vb7CSA91fZQoaAZoCWgPQwhlqIqpdERyQJSGlFKUaBVNUgFoFkdAhv7o+GGmDXV9lChoBmgJaA9DCCNNvAN8anBAlIaUUpRoFU0KAWgWR0CG/zJ8v24/dX2UKGgGaAloD0MIP5EnSdfVckCUhpRSlGgVTT4BaBZHQIb/UHdGiHt1fZQoaAZoCWgPQwjxnZj1YkhNQJSGlFKUaBVL+WgWR0CG/5X/5tWNdX2UKGgGaAloD0MI6fNRRpxrcUCUhpRSlGgVTSIBaBZHQIcC4aNuLrJ1fZQoaAZoCWgPQwjObi2TISpxQJSGlFKUaBVNEQFoFkdAhwNxyXD3unV9lChoBmgJaA9DCDz03a2srm5AlIaUUpRoFU0WAWgWR0CHBDqeK8+SdX2UKGgGaAloD0MIblLRWHvxcUCUhpRSlGgVTUYBaBZHQIcEaJVKf4B1fZQoaAZoCWgPQwhMjjulA21uQJSGlFKUaBVNaAFoFkdAhwYTsQd0aXV9lChoBmgJaA9DCFddh2pKHEhAlIaUUpRoFU0CAWgWR0CHBjxAB1cMdX2UKGgGaAloD0MIq8spATEOckCUhpRSlGgVTSoBaBZHQIcGvT7VJ+V1fZQoaAZoCWgPQwho6+Bg7/xvQJSGlFKUaBVNOAFoFkdAhwjNmlImPnV9lChoBmgJaA9DCE1Iawx603BAlIaUUpRoFU0bAWgWR0CHCVcCYCyRdX2UKGgGaAloD0MIXB5rRob6cECUhpRSlGgVTTUBaBZHQIcJYyM1jy51fZQoaAZoCWgPQwiqKjQQy2BxQJSGlFKUaBVNPQFoFkdAhwnFnAZbZHV9lChoBmgJaA9DCKLuA5Da329AlIaUUpRoFU1IAWgWR0CHCq55JK8MdX2UKGgGaAloD0MIu9QI/czoa0CUhpRSlGgVTVsBaBZHQIcLK8jAzpJ1fZQoaAZoCWgPQwj2lQfpKQFxQJSGlFKUaBVNTwFoFkdAhwvWIoE0SHV9lChoBmgJaA9DCN80fXZAk25AlIaUUpRoFU1pAWgWR0CHDGHt4RmLdX2UKGgGaAloD0MIGcdI9oiGb0CUhpRSlGgVTRYBaBZHQIcPPL3bmEJ1fZQoaAZoCWgPQwgLQ+T0dZ5uQJSGlFKUaBVNMwFoFkdAhw9xO+IuXnV9lChoBmgJaA9DCCld+pekxm1AlIaUUpRoFU08AWgWR0CHEI3z+WGAdX2UKGgGaAloD0MIRE5fz1fPbkCUhpRSlGgVTSQBaBZHQIcRvH1e0HB1fZQoaAZoCWgPQwj9+EuLOglxQJSGlFKUaBVNHwFoFkdAhxITP0I1L3V9lChoBmgJaA9DCHkEN1I2M21AlIaUUpRoFU0xAWgWR0CHEh4ZdfLLdX2UKGgGaAloD0MIkX77OjCfcECUhpRSlGgVTS4BaBZHQIcVJyMkyDZ1fZQoaAZoCWgPQwheE9IaA1hvQJSGlFKUaBVNOAFoFkdAhxWjmCAc1nV9lChoBmgJaA9DCBFV+DN85XBAlIaUUpRoFU07AWgWR0CHFizNUwSKdX2UKGgGaAloD0MIgqrRqwFVckCUhpRSlGgVTScBaBZHQIcWVKIznA91fZQoaAZoCWgPQwgTDr3Fg59yQJSGlFKUaBVNYwFoFkdAhxbNhVlwtXV9lChoBmgJaA9DCKJFtvM9A3JAlIaUUpRoFU0cAWgWR0CHFxQQ+UyIdX2UKGgGaAloD0MI3/3xXjV7cECUhpRSlGgVTToBaBZHQIcXdgOSW7h1fZQoaAZoCWgPQwi0keum1J5xQJSGlFKUaBVNRgFoFkdAhxkaLfk3j3V9lChoBmgJaA9DCCMsKuJ04EpAlIaUUpRoFUvbaBZHQIcafSF49ox1fZQoaAZoCWgPQwh4mWGjLL1sQJSGlFKUaBVNLQFoFkdAhxsV9ORDC3V9lChoBmgJaA9DCKOQZFbvxHFAlIaUUpRoFU1PAWgWR0CHHCcXFcY7dX2UKGgGaAloD0MIilbuBWYCcUCUhpRSlGgVTTgBaBZHQIcchzgdfb91fZQoaAZoCWgPQwiu78NBgr9xQJSGlFKUaBVNKgFoFkdAhx1tSZSeiHV9lChoBmgJaA9DCHIUIApmgXBAlIaUUpRoFU1SAWgWR0CHHrYs/Y8MdX2UKGgGaAloD0MIucFQhxWETECUhpRSlGgVS+BoFkdAhx9yXdCVr3V9lChoBmgJaA9DCA+AuKtXimFAlIaUUpRoFU3oA2gWR0CHH6VtXPqtdX2UKGgGaAloD0MI5ueGpuyLcECUhpRSlGgVTQ4BaBZHQIcgPrGBFux1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-generic-x86_64-with-glibc2.10 #123~18.04.1-Ubuntu SMP Fri Apr 8 09:48:52 UTC 2022", "Python": "3.8.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0", "GPU Enabled": "True", "Numpy": "1.21.5", "Gym": "0.21.0"}}
|
lunar v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db03ddf0951ee79c8e47bbefab37770857b35665fe1f1236ed390501261d00d7
|
3 |
+
size 144257
|
lunar v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
lunar v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f348bb2ddc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f348bb2de50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f348bb2dee0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f348bb2df70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f348bb32040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f348bb320d0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f348bb32160>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f348bb321f0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f348bb32280>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f348bb32310>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f348bb323a0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f348bb30090>"
|
20 |
+
},
|
21 |
+
"verbose": 0,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000.0,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652225217.3119054,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAByYDxSrRQ+1A/CO3uPiL7yJO08FvSSvAAAAAAAAAAAM969PdIwlD8Bnj4+hbnIvh3Buz2TOT89AAAAAAAAAAAznfU8e3yHut4e+7tngYo8cCPputaIcT0AAIA/AACAP828+ruZOqA+QXIZPu0tqL7+YKc9LlkHvAAAAAAAAAAAAKHIvdl6uT624QI+DueXvgiDgzyqKDs9AAAAAAAAAADNdlQ+W3frvG0YpLq+aUM5B7RZvrjV3zkAAIA/AACAPzpBUT5fHiw/7iOMvU3csr4IKx89ttIAvQAAAAAAAAAAuiaRvhiAaz8zE7u88VmGvvB1c75Ad589AAAAAAAAAAAatgs9PR0lu/NR0LwakHo8OahIPPtuWb0AAIA/AACAP2YqOzy4T/+7ohKlu9T6jjzRM1g9LgNvvQAAgD8AAIA/AJgFPjNOsj939Q4/CR2VvhJ+7D26PYA+AAAAAAAAAADGWxM+thU8P46egr0b2I++b1RmPbeOir0AAAAAAAAAAMDR3L23Up0/WtQRv4mk175FDua80PjUvQAAAAAAAAAAE0WPvrqbGj9JwCg+gBKHvr91lb3ajXk8AAAAAAAAAAAmXMQ9w2UXOcSAJjzvzqo8uq8eOt5ajzsAAIA/AACAP83EPbuz7LU/CiyWvtHh6z6QVVw7kxCIPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIryR5rm/6cECUhpRSlIwBbJRNHQGMAXSUR0CGuQAJ9iMHdX2UKGgGaAloD0MIDRmPUgkhS0CUhpRSlGgVS+1oFkdAhrw212JSBXV9lChoBmgJaA9DCOZ1xCGbDXFAlIaUUpRoFU0gAWgWR0CGvFtgKF7EdX2UKGgGaAloD0MIJCu/DAa9ckCUhpRSlGgVTUcBaBZHQIa8lPxhDw91fZQoaAZoCWgPQwjtZHCUvOJvQJSGlFKUaBVNSwFoFkdAhr0CVSn+AHV9lChoBmgJaA9DCEJ6ihwif29AlIaUUpRoFU1xAWgWR0CGvjn7HhjwdX2UKGgGaAloD0MInwWhvI+5cECUhpRSlGgVTS4BaBZHQIa+bzND+it1fZQoaAZoCWgPQwi0O6QYoINuQJSGlFKUaBVNaQFoFkdAhr8OJtSAH3V9lChoBmgJaA9DCIl+bf10oW9AlIaUUpRoFU06AWgWR0CGv5KAavRrdX2UKGgGaAloD0MIUKvoD02bcUCUhpRSlGgVTUwBaBZHQIa/xNVR1ox1fZQoaAZoCWgPQwjUtfY+1cduQJSGlFKUaBVNJQFoFkdAhr/YG2TgVHV9lChoBmgJaA9DCA4sR8jAIHBAlIaUUpRoFU0jAWgWR0CGv+LORkmQdX2UKGgGaAloD0MIsyPVd37wbUCUhpRSlGgVTSgBaBZHQIbAHhZQpF11fZQoaAZoCWgPQwjtZdtpq0BwQJSGlFKUaBVNFQFoFkdAhsDRIre67XV9lChoBmgJaA9DCEQV/gxvDXJAlIaUUpRoFU0SAWgWR0CGwZthuwX7dX2UKGgGaAloD0MI1sQCX5HIcUCUhpRSlGgVTTcBaBZHQIbCcs189fV1fZQoaAZoCWgPQwiUTbnC+2NwQJSGlFKUaBVNGQFoFkdAhsL96sySFHV9lChoBmgJaA9DCCjv42gOK3JAlIaUUpRoFU0pAWgWR0CGxwL0Bfa6dX2UKGgGaAloD0MI9KeN6vTwb0CUhpRSlGgVTQoBaBZHQIbHWgYgq3F1fZQoaAZoCWgPQwhQqRJlryFwQJSGlFKUaBVNOgFoFkdAhseWYv38GnV9lChoBmgJaA9DCLxa7swEb29AlIaUUpRoFU1IAWgWR0CGyBX/5tWNdX2UKGgGaAloD0MIZED2erfncUCUhpRSlGgVTSsBaBZHQIbJCvcJtzl1fZQoaAZoCWgPQwhI3GPpQ45wQJSGlFKUaBVNTwFoFkdAhsktLcsUZnV9lChoBmgJaA9DCD/EBgsnc2xAlIaUUpRoFU0hAWgWR0CGyiq94/u9dX2UKGgGaAloD0MICfmgZ3P8cUCUhpRSlGgVTS0BaBZHQIbKV7F85S51fZQoaAZoCWgPQwjKwtfXOvpvQJSGlFKUaBVNRwFoFkdAhsrZzo2XLXV9lChoBmgJaA9DCPflzHYFvm5AlIaUUpRoFU0tAWgWR0CGyvX7Lt/ndX2UKGgGaAloD0MIj8TL0/lSckCUhpRSlGgVTT4BaBZHQIbLNaUzKtB1fZQoaAZoCWgPQwg6dlCJ6ytyQJSGlFKUaBVNQwFoFkdAhstMcp9ZzXV9lChoBmgJaA9DCOP74lLVknFAlIaUUpRoFU1OAWgWR0CGzZIatLcsdX2UKGgGaAloD0MIweRGkbVacECUhpRSlGgVTXgBaBZHQIbOAkPczqN1fZQoaAZoCWgPQwjk+QyoN5JwQJSGlFKUaBVNYwFoFkdAhs9b0e2d/nV9lChoBmgJaA9DCM0FLo91ZnFAlIaUUpRoFU11AWgWR0CG0NRAKOT8dX2UKGgGaAloD0MIYVERp5NgcUCUhpRSlGgVTSQBaBZHQIbSZwjt5Ut1fZQoaAZoCWgPQwhdaoR+JtlwQJSGlFKUaBVNLQFoFkdAhtKUnXumanV9lChoBmgJaA9DCO91Ul/WknFAlIaUUpRoFU09AWgWR0CG0vSXMQmNdX2UKGgGaAloD0MI98ySAPWucUCUhpRSlGgVTTgBaBZHQIbTqgmJFb51fZQoaAZoCWgPQwh0stR6P2dxQJSGlFKUaBVNFgFoFkdAhtRZpSJj2HV9lChoBmgJaA9DCGNEotByw3FAlIaUUpRoFU1GAWgWR0CG1Q3m3fALdX2UKGgGaAloD0MIqgoNxLIicECUhpRSlGgVTSEBaBZHQIbVZrpJPIp1fZQoaAZoCWgPQwjGia92FMhvQJSGlFKUaBVNWAFoFkdAhtXSPdVNpXV9lChoBmgJaA9DCNukorH2AHJAlIaUUpRoFU1GAWgWR0CG1ozwc5sCdX2UKGgGaAloD0MIRYDTu3iGb0CUhpRSlGgVTUIBaBZHQIbW4UYbbUR1fZQoaAZoCWgPQwg5tp4hHA5xQJSGlFKUaBVNZQFoFkdAhtcDLjghr3V9lChoBmgJaA9DCPzHQnSIeXBAlIaUUpRoFU1rAWgWR0CG2Ag+QlrudX2UKGgGaAloD0MIm+RH/AqxcECUhpRSlGgVTS4BaBZHQIbZDGT9sJp1fZQoaAZoCWgPQwimnZrLDWlwQJSGlFKUaBVNSgFoFkdAhtuFJYkmhXV9lChoBmgJaA9DCAa7YdsiNXFAlIaUUpRoFU2BAWgWR0CG26Pjn3cpdX2UKGgGaAloD0MIDvW7sPUAcUCUhpRSlGgVTQ4BaBZHQIbcBmukk8l1fZQoaAZoCWgPQwjGbwor1WJxQJSGlFKUaBVNQwFoFkdAhvpbRF7UonV9lChoBmgJaA9DCIZa07zjNAJAlIaUUpRoFU0CAWgWR0CG+m/D+BH1dX2UKGgGaAloD0MIEJTb9j3QcUCUhpRSlGgVTSIBaBZHQIb66oAGSp11fZQoaAZoCWgPQwiSBre1BQJyQJSGlFKUaBVNWQFoFkdAhvyaZQYUFnV9lChoBmgJaA9DCJG4x9KHy21AlIaUUpRoFU0gAWgWR0CG/ZlcQiA2dX2UKGgGaAloD0MID7QCQ1avcUCUhpRSlGgVTQcBaBZHQIb923QUpNN1fZQoaAZoCWgPQwgOT6+UpTpwQJSGlFKUaBVNXgFoFkdAhv5wdsBQvnV9lChoBmgJaA9DCIfguIybe29AlIaUUpRoFU1OAWgWR0CG/oMdcSoPdX2UKGgGaAloD0MI4gD6fX9PcUCUhpRSlGgVTRwBaBZHQIb+vb7CSA91fZQoaAZoCWgPQwhlqIqpdERyQJSGlFKUaBVNUgFoFkdAhv7o+GGmDXV9lChoBmgJaA9DCCNNvAN8anBAlIaUUpRoFU0KAWgWR0CG/zJ8v24/dX2UKGgGaAloD0MIP5EnSdfVckCUhpRSlGgVTT4BaBZHQIb/UHdGiHt1fZQoaAZoCWgPQwjxnZj1YkhNQJSGlFKUaBVL+WgWR0CG/5X/5tWNdX2UKGgGaAloD0MI6fNRRpxrcUCUhpRSlGgVTSIBaBZHQIcC4aNuLrJ1fZQoaAZoCWgPQwjObi2TISpxQJSGlFKUaBVNEQFoFkdAhwNxyXD3unV9lChoBmgJaA9DCDz03a2srm5AlIaUUpRoFU0WAWgWR0CHBDqeK8+SdX2UKGgGaAloD0MIblLRWHvxcUCUhpRSlGgVTUYBaBZHQIcEaJVKf4B1fZQoaAZoCWgPQwhMjjulA21uQJSGlFKUaBVNaAFoFkdAhwYTsQd0aXV9lChoBmgJaA9DCFddh2pKHEhAlIaUUpRoFU0CAWgWR0CHBjxAB1cMdX2UKGgGaAloD0MIq8spATEOckCUhpRSlGgVTSoBaBZHQIcGvT7VJ+V1fZQoaAZoCWgPQwho6+Bg7/xvQJSGlFKUaBVNOAFoFkdAhwjNmlImPnV9lChoBmgJaA9DCE1Iawx603BAlIaUUpRoFU0bAWgWR0CHCVcCYCyRdX2UKGgGaAloD0MIXB5rRob6cECUhpRSlGgVTTUBaBZHQIcJYyM1jy51fZQoaAZoCWgPQwiqKjQQy2BxQJSGlFKUaBVNPQFoFkdAhwnFnAZbZHV9lChoBmgJaA9DCKLuA5Da329AlIaUUpRoFU1IAWgWR0CHCq55JK8MdX2UKGgGaAloD0MIu9QI/czoa0CUhpRSlGgVTVsBaBZHQIcLK8jAzpJ1fZQoaAZoCWgPQwj2lQfpKQFxQJSGlFKUaBVNTwFoFkdAhwvWIoE0SHV9lChoBmgJaA9DCN80fXZAk25AlIaUUpRoFU1pAWgWR0CHDGHt4RmLdX2UKGgGaAloD0MIGcdI9oiGb0CUhpRSlGgVTRYBaBZHQIcPPL3bmEJ1fZQoaAZoCWgPQwgLQ+T0dZ5uQJSGlFKUaBVNMwFoFkdAhw9xO+IuXnV9lChoBmgJaA9DCCld+pekxm1AlIaUUpRoFU08AWgWR0CHEI3z+WGAdX2UKGgGaAloD0MIRE5fz1fPbkCUhpRSlGgVTSQBaBZHQIcRvH1e0HB1fZQoaAZoCWgPQwj9+EuLOglxQJSGlFKUaBVNHwFoFkdAhxITP0I1L3V9lChoBmgJaA9DCHkEN1I2M21AlIaUUpRoFU0xAWgWR0CHEh4ZdfLLdX2UKGgGaAloD0MIkX77OjCfcECUhpRSlGgVTS4BaBZHQIcVJyMkyDZ1fZQoaAZoCWgPQwheE9IaA1hvQJSGlFKUaBVNOAFoFkdAhxWjmCAc1nV9lChoBmgJaA9DCBFV+DN85XBAlIaUUpRoFU07AWgWR0CHFizNUwSKdX2UKGgGaAloD0MIgqrRqwFVckCUhpRSlGgVTScBaBZHQIcWVKIznA91fZQoaAZoCWgPQwgTDr3Fg59yQJSGlFKUaBVNYwFoFkdAhxbNhVlwtXV9lChoBmgJaA9DCKJFtvM9A3JAlIaUUpRoFU0cAWgWR0CHFxQQ+UyIdX2UKGgGaAloD0MI3/3xXjV7cECUhpRSlGgVTToBaBZHQIcXdgOSW7h1fZQoaAZoCWgPQwi0keum1J5xQJSGlFKUaBVNRgFoFkdAhxkaLfk3j3V9lChoBmgJaA9DCCMsKuJ04EpAlIaUUpRoFUvbaBZHQIcafSF49ox1fZQoaAZoCWgPQwh4mWGjLL1sQJSGlFKUaBVNLQFoFkdAhxsV9ORDC3V9lChoBmgJaA9DCKOQZFbvxHFAlIaUUpRoFU1PAWgWR0CHHCcXFcY7dX2UKGgGaAloD0MIilbuBWYCcUCUhpRSlGgVTTgBaBZHQIcchzgdfb91fZQoaAZoCWgPQwiu78NBgr9xQJSGlFKUaBVNKgFoFkdAhx1tSZSeiHV9lChoBmgJaA9DCHIUIApmgXBAlIaUUpRoFU1SAWgWR0CHHrYs/Y8MdX2UKGgGaAloD0MIucFQhxWETECUhpRSlGgVS+BoFkdAhx9yXdCVr3V9lChoBmgJaA9DCA+AuKtXimFAlIaUUpRoFU3oA2gWR0CHH6VtXPqtdX2UKGgGaAloD0MI5ueGpuyLcECUhpRSlGgVTQ4BaBZHQIcgPrGBFux1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 310,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 5,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS93d3ltYWsvYW5hY29uZGEzL2VudnMvZGVlcHJsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
lunar v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:490348b1c85a6b8220a2c28099c82e90abcc2447d5f070358938b97fe715e978
|
3 |
+
size 84893
|
lunar v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7b3b138f903dc66cc698a3b015e9fd1e9d83e2ddeff04bd83540723c6628801
|
3 |
+
size 43201
|
lunar v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.0-109-generic-x86_64-with-glibc2.10 #123~18.04.1-Ubuntu SMP Fri Apr 8 09:48:52 UTC 2022
|
2 |
+
Python: 3.8.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.5
|
7 |
+
Gym: 0.21.0
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf2344b5e662aeb8fa96bc787a6c41ea49b517cb783effaf36db7799d686bc27
|
3 |
+
size 192943
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 251.91712695892812, "std_reward": 22.081042742626344, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T00:50:09.676097"}
|