SentenceTransformer based on Snowflake/snowflake-arctic-embed-l-v2.0

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l-v2.0 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-l-v2.0
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: PeftModelForFeatureExtraction 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Risk-based water quality monitoring framework',
    'Development of a new risk-based framework to guide investment in water quality monitoring. ',
    'Water quality monitoring strategies - A review and future perspectives. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.802

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 10,053 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 4 tokens
    • mean: 10.58 tokens
    • max: 33 tokens
    • min: 5 tokens
    • mean: 26.91 tokens
    • max: 79 tokens
    • min: 4 tokens
    • mean: 15.99 tokens
    • max: 61 tokens
  • Samples:
    anchor positive negative
    Pediatric Infectious Disease Control [Urgent tasks in scientific studies concerning the control of infectious diseases in children]. Pediatric workforce: a look at pediatric infectious diseases data from the American Board of Pediatrics.
    Thermal coefficient of phase shift Thermal characteristics of phase shift in jacketed optical fibers. Thermal effects.
    Renal biomarkers in heart failure Current and novel renal biomarkers in heart failure. Cardiac biomarkers of heart failure in chronic kidney disease.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • num_train_epochs: 1
  • lr_scheduler_type: cosine_with_restarts
  • warmup_ratio: 0.1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss triplet-dev_cosine_accuracy
0 0 - 0.58
0.0127 1 1.677 -
0.0253 2 1.7295 -
0.0380 3 1.6713 -
0.0506 4 1.4761 -
0.0633 5 1.3731 -
0.0759 6 1.8333 -
0.0886 7 1.3218 -
0.1013 8 1.1539 -
0.1139 9 1.4003 -
0.1266 10 1.4514 -
0.1392 11 1.0803 -
0.1519 12 1.183 -
0.1646 13 0.9984 -
0.1772 14 1.2043 -
0.1899 15 1.1367 -
0.2025 16 1.1863 -
0.2152 17 1.0185 -
0.2278 18 0.9038 -
0.2405 19 0.8942 -
0.2532 20 1.0396 -
0.2658 21 1.1067 -
0.2785 22 1.0281 -
0.2911 23 1.1479 -
0.3038 24 1.2893 -
0.3165 25 1.0388 -
0.3291 26 1.1925 -
0.3418 27 0.9564 -
0.3544 28 0.8533 -
0.3671 29 0.9999 -
0.3797 30 1.126 -
0.3924 31 0.9898 -
0.4051 32 0.8786 -
0.4177 33 0.9878 -
0.4304 34 1.0988 -
0.4430 35 0.9721 -
0.4557 36 0.838 -
0.4684 37 0.9935 -
0.4810 38 1.1439 -
0.4937 39 0.7076 -
0.5063 40 1.0033 -
0.5190 41 1.0411 -
0.5316 42 0.8646 -
0.5443 43 0.8991 -
0.5570 44 0.6337 -
0.5696 45 1.0695 -
0.5823 46 0.9144 -
0.5949 47 0.9248 -
0.6076 48 0.7711 -
0.6203 49 1.0001 -
0.6329 50 1.0151 -
0.6456 51 1.06 -
0.6582 52 0.8105 -
0.6709 53 0.6892 -
0.6835 54 1.1341 -
0.6962 55 0.9726 -
0.7089 56 0.8783 -
0.7215 57 0.8084 -
0.7342 58 1.089 -
0.7468 59 0.8486 -
0.7595 60 0.8507 -
0.7722 61 0.9502 -
0.7848 62 0.8178 -
0.7975 63 1.0142 -
0.8101 64 0.9516 -
0.8228 65 0.9399 -
0.8354 66 0.7602 -
0.8481 67 0.8389 -
0.8608 68 0.9234 -
0.8734 69 0.9747 -
0.8861 70 1.1591 -
0.8987 71 1.0074 -
0.9114 72 0.8169 -
0.9241 73 0.9561 -
0.9367 74 0.9406 -
0.9494 75 0.9603 -
0.9620 76 0.8758 -
0.9747 77 0.8546 -
0.9873 78 0.7313 -
1.0 79 0.6568 0.802

Framework Versions

  • Python: 3.12.3
  • Sentence Transformers: 3.3.1
  • Transformers: 4.48.0.dev0
  • PyTorch: 2.5.1
  • Accelerate: 1.2.1
  • Datasets: 2.19.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
12
Safetensors
Model size
568M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for wwydmanski/arctic-pubmed-v0.1

Finetuned
(8)
this model

Evaluation results