metadata
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- wwwtwwwt/fineaudio-ArtCreativity
metrics:
- wer
model-index:
- name: Whisper Tiny En - ArtCreativity - Photography Tips
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fineaudio-ArtCreativity-Photography Tips
type: wwwtwwwt/fineaudio-ArtCreativity
args: 'config: en, split: test'
metrics:
- name: Wer
type: wer
value: 38.063369778089054
Whisper Tiny En - ArtCreativity - Photography Tips
This model is a fine-tuned version of openai/whisper-tiny on the fineaudio-ArtCreativity-Photography Tips dataset. It achieves the following results on the evaluation set:
- Loss: 0.7296
- Wer: 38.0634
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.7998 | 0.7199 | 1000 | 0.8235 | 49.0292 |
0.5335 | 1.4399 | 2000 | 0.7543 | 42.1397 |
0.4172 | 2.1598 | 3000 | 0.7355 | 40.0646 |
0.3939 | 2.8798 | 4000 | 0.7296 | 38.0634 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.20.0