train2dataset / README.md
wwwtwwwt's picture
End of training
c5d02c3 verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - wwwtwwwt/fineaudio-Entertainment
metrics:
  - wer
model-index:
  - name: Whisper Tiny En - Entertainment - Game Commentary
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fineaudio-Entertainment-Game Commentary
          type: wwwtwwwt/fineaudio-Entertainment
          args: 'config: en, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 44.63537366215395

Whisper Tiny En - Entertainment - Game Commentary

This model is a fine-tuned version of openai/whisper-tiny on the fineaudio-Entertainment-Game Commentary dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8782
  • Wer: 44.6354

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7661 0.5984 1000 0.9245 49.5708
0.5931 1.1969 2000 0.8876 48.4366
0.5748 1.7953 3000 0.8788 44.2101
0.4717 2.3938 4000 0.8782 44.6354

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.0