{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=", "__module__": "stable_baselines3.sac.policies", "__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function SACPolicy.__init__ at 0x7e4523099090>", "_build": "<function SACPolicy._build at 0x7e4523099120>", "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7e45230991b0>", "reset_noise": "<function SACPolicy.reset_noise at 0x7e4523099240>", "make_actor": "<function SACPolicy.make_actor at 0x7e45230992d0>", "make_critic": "<function SACPolicy.make_critic at 0x7e4523099360>", "forward": "<function SACPolicy.forward at 0x7e45230993f0>", "_predict": "<function SACPolicy._predict at 0x7e4523099480>", "set_training_mode": "<function SACPolicy.set_training_mode at 0x7e4523099510>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e45230a3940>"}, "verbose": 0, "policy_kwargs": {"net_arch": [64, 64], "use_sde": false}, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1732205994687603836, "learning_rate": 1.9076243201421694e-05, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAHt+UL0Lq38/BQ5Ev5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAE/8fz9O3i28dV+DvZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="}, "_episode_num": 500, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwF+3fPomoiuMAWyUS8iMAXSUR0C3wyMV1wHadX2UKGgGR7/rJQk5ZKWcaAdLyGgIR0C30lfnKW9ldX2UKGgGR8Bt1h/ZuhsZaAdLyGgIR0C34aZBcAzYdX2UKGgGR8BdjpEDyOJdaAdLyGgIR0C38SdutOmBdX2UKGgGR8BtFl0YCQtBaAdLyGgIR0C4AB1+EytWdX2UKGgGR8BuWC4MF2V3aAdLyGgIR0C4D5OPq9oOdX2UKGgGR8B1qp78ejmCaAdLyGgIR0C4Hq+Zw4sFdX2UKGgGR8BtGuAoXsPbaAdLyGgIR0C4LcIXO4XodX2UKGgGR8Bf2mbsniNsaAdLyGgIR0C4PNm5c1O1dX2UKGgGR8BgEuza9K28aAdLyGgIR0C4TDtjbzshdX2UKGgGR8BgAp9kSVW0aAdLyGgIR0C4W0iXpnpTdX2UKGgGR8Bf46nWJ79iaAdLyGgIR0C4amYcm0E6dX2UKGgGR8BgISOgg5imaAdLyGgIR0C4eXedTYNBdX2UKGgGR8BgO7ollbu/aAdLyGgIR0C4iKxNM496dX2UKGgGR8BucU+qzZ6EaAdLyGgIR0C4l9fc8DB/dX2UKGgGR8B1W+raM72daAdLyGgIR0C4ptiBClabdX2UKGgGR7/yzD4xk/bCaAdLyGgIR0C4this0YTCdX2UKGgGR8Bf4Xm7rcCYaAdLyGgIR0C4xRdI9TxYdX2UKGgGR8BgilTNt65YaAdLyGgIR0C41EZ8WsRydX2UKGgGR8BftU7GNrCWaAdLyGgIR0C440oTXarWdX2UKGgGR8BgSufXf642aAdLyGgIR0C48lgCW/rTdX2UKGgGR8Bf2yElE7W/aAdLyGgIR0C5AU/m9xp+dX2UKGgGR8BgHtYfW+XaaAdLyGgIR0C5EH6FuejEdX2UKGgGR8BfmqpLmITHaAdLyGgIR0C5H2/n8sMBdX2UKGgGR8BgAdx6v7m/aAdLyGgIR0C5Lm/xMFlkdX2UKGgGR8BvyKzZ6D5CaAdLyGgIR0C5PVilSCOFdX2UKGgGR8BgFOce8wpOaAdLyGgIR0C5TLxvBJqZdX2UKGgGR8BtiuKfnOjZaAdLyGgIR0C5XBhcJMQFdX2UKGgGR7/haWHDaXa8aAdLyGgIR0C5a54DgZTAdX2UKGgGR8BfDw1rIo3KaAdLyGgIR0C5evWKyfL+dX2UKGgGR8BgA2wmmce9aAdLyGgIR0C5ihSFTNt7dX2UKGgGR8BgLQ4wRGtqaAdLyGgIR0C5mS318LKFdX2UKGgGR8BgTFtqHoHLaAdLyGgIR0C5qDgDNhVmdX2UKGgGR8BgLKX0Gu9waAdLyGgIR0C5tzTbi6xxdX2UKGgGR8BgHvlOoHcDaAdLyGgIR0C5xlJDJEH/dX2UKGgGR8BgKuEVWS2ZaAdLyGgIR0C51Wjnmq5tdX2UKGgGR8BfOZ4W1twaaAdLyGgIR0C55G5WV/tqdX2UKGgGR8BemOPNmlImaAdLyGgIR0C584lvZRKpdX2UKGgGR8B2c8q6OHWSaAdLyGgIR0C6AprpA2Q5dX2UKGgGR8Bf6ZI6Kcd6aAdLyGgIR0C6EcRlDneSdX2UKGgGR8Be792X9itraAdLyGgIR0C6IMMgyM1kdX2UKGgGR8BdGb+Lm6oVaAdLyGgIR0C6L/uUMXrMdX2UKGgGR7/5Ru89Oh0yaAdLyGgIR0C6PwLOu7pWdX2UKGgGR7/xZuyeI2wWaAdLyGgIR0C6TjmkvboKdX2UKGgGR8Bgb+J3xFy8aAdLyGgIR0C6XTsFQl8gdX2UKGgGR8BufCEUTL4faAdLyGgIR0C6bEtwm3OOdX2UKGgGR8Bu+7ABT4tZaAdLyGgIR0C6e1TufEn9dX2UKGgGR7/x7BfrrxAjaAdLyGgIR0C6imjslb/wdX2UKGgGR8BgHimEXcgyaAdLyGgIR0C6mW/duYQbdX2UKGgGR8BfmN+9alk6aAdLyGgIR0C6qNd+gDigdX2UKGgGR8BgPsOqebuuaAdLyGgIR0C6t9fS+g14dX2UKGgGR8B1beoMrmQsaAdLyGgIR0C6xyMpG4I9dX2UKGgGR8BwPXzkIX0oaAdLyGgIR0C61hOE25xzdX2UKGgGR8BfkBIJ7b+MaAdLyGgIR0C65T6tT1kEdX2UKGgGR8Bt+XYJ3PiUaAdLyGgIR0C69Dm/zreJdX2UKGgGR8BgJwaFVT73aAdLyGgIR0C7A2FeSjgydX2UKGgGR8BgVeNHYpUhaAdLyGgIR0C7EnTvmYBvdX2UKGgGR7/hcL8aXKKYaAdLyGgIR0C7IXI/Z/TcdX2UKGgGR8BfToHLRrrPaAdLyGgIR0C7MJRLXcxkdX2UKGgGR8Btw4valDWtaAdLyGgIR0C7P68oc7yQdX2UKGgGR7/hIzvZyuIRaAdLyGgIR0C7TsqGQCCBdX2UKGgGR8BdW/lZHNHIaAdLyGgIR0C7Xehbr1M/dX2UKGgGR8BgbVMmF8G+aAdLyGgIR0C7bO8oUi6hdX2UKGgGR8Bf8QVwgkkbaAdLyGgIR0C7fB5f6XSjdX2UKGgGR7/7w0bcXWOIaAdLyGgIR0C7izvUrkKedX2UKGgGR8BfDrD63y7PaAdLyGgIR0C7mkBDXvphdX2UKGgGR8BgPBX8wYceaAdLyGgIR0C7qYYE4ecQdX2UKGgGR8Bvg9+gDifhaAdLyGgIR0C7uK9yksSTdX2UKGgGR8Bfu8nRb8m8aAdLyGgIR0C7x9RISUTtdX2UKGgGR8BwMK08eS0TaAdLyGgIR0C71tvllsgudX2UKGgGR8BwicIgNgBtaAdLyGgIR0C75kYuPFNtdX2UKGgGR8BeL/fTCtRvaAdLyGgIR0C79SoqG1x9dX2UKGgGR8Bt24CEHt4SaAdLyGgIR0C8BIz/VAiWdX2UKGgGR8Bsu6KUFB6baAdLyGgIR0C8E5Zx3mmtdX2UKGgGR8Bf+e14Pf8/aAdLyGgIR0C8Ite3+dbxdX2UKGgGR8Bd7mcvugHvaAdLyGgIR0C8MfDBAOawdX2UKGgGR8BgMImXw9aEaAdLyGgIR0C8QSg97ngYdX2UKGgGR7/0F6eGwiaBaAdLyGgIR0C8UFYPPLPldX2UKGgGR8Bcyouf29L6aAdLyGgIR0C8X3uRT0g9dX2UKGgGR8BdS99+gDigaAdLyGgIR0C8bomx+rlvdX2UKGgGR7/tX9JjDsMRaAdLyGgIR0C8fbwlnh86dX2UKGgGR8BeiN/BnBciaAdLyGgIR0C8jPQHeJpGdX2UKGgGR7/7QWrOqvNeaAdLyGgIR0C8m/uEmICVdX2UKGgGR7/zI6XBxgiNaAdLyGgIR0C8qxYCuEEldX2UKGgGR8BfURcmjTKDaAdLyGgIR0C8uhwzDXOGdX2UKGgGR7/5p22Xsw+MaAdLyGgIR0C8yWG4d6sydX2UKGgGR8BgA67ulXRxaAdLyGgIR0C82KIzrNW3dX2UKGgGR8BgaFxhlUZOaAdLyGgIR0C8573FHavidX2UKGgGR8BxCDXiBGx2aAdLyGgIR0C89roWtU4rdX2UKGgGR7/qpQtSQ5mzaAdLyGgIR0C9BfDZtelbdX2UKGgGR7/qce8wpON6aAdLyGgIR0C9FTFbVz6rdX2UKGgGR8BueeepXIU8aAdLyGgIR0C9JHE8/2TQdX2UKGgGR8Bt3OFlCkXUaAdLyGgIR0C9M5PECNjtdX2UKGgGR8BgSkdo371qaAdLyGgIR0C9Qsr+tKZldX2UKGgGR8BekKtLcsUZaAdLyGgIR0C9UgCNbTttdX2UKGgGR7/mrhisny/caAdLyGgIR0C9YTJ0W/JvdX2UKGgGR8BfnFJ6IFeOaAdLyGgIR0C9cEZCa7VbdX2UKGgGR8BgE3HmzSkTaAdLyGgIR0C9f4VxbSqmdX2UKGgGR8BgdIeHSF4+aAdLyGgIR0C9jt31zySWdX2UKGgGR8Bf9Q8bJfY0aAdLyGgIR0C9nf5eu3c6dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 799200, "buffer_size": 100000, "batch_size": 256, "learning_starts": 100, "tau": 0.0005435995778071192, "gamma": 0.9297866969132312, "gradient_steps": 8, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7e452326ff40>", "add": "<function ReplayBuffer.add at 0x7e4523088040>", "sample": "<function ReplayBuffer.sample at 0x7e45230880d0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7e4523088160>", "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7e45230881f0>)>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e4523fd23c0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -1.0, "ent_coef": "auto", "target_update_interval": 1, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVrQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AAAAQZRoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwNWy0xLiAtMS4gLTguXZSMCWhpZ2hfcmVwcpSMClsxLiAxLiA4Ll2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -8.]", "high": "[1. 1. 8.]", "low_repr": "[-1. -1. -8.]", "high_repr": "[1. 1. 8.]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVTAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYBAAAAAAAAAAGUaBVLAYWUaBl0lFKUjAZfc2hhcGWUSwGFlIwDbG93lGgRKJYEAAAAAAAAAAAAAMCUaAtLAYWUaBl0lFKUjARoaWdolGgRKJYEAAAAAAAAAAAAAECUaAtLAYWUaBl0lFKUjAhsb3dfcmVwcpSMBC0yLjCUjAloaWdoX3JlcHKUjAMyLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQlEtnCvUy9v5ERngeS5BZUIwDaW5jlIoQ8QpDkgKYByGvoWuTcVnkQXWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True]", "bounded_above": "[ True]", "_shape": [1], "low": "[-2.]", "high": "[2.]", "low_repr": "-2.0", "high_repr": "2.0", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVqAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+9AC9c22NPIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-6.6.56+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Nov 10 10:07:59 UTC 2024", "Python": "3.10.14", "Stable-Baselines3": "2.1.0", "PyTorch": "2.4.0", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.0", "OpenAI Gym": "0.26.2"}} |