wowthecoder
commited on
Commit
•
5931f3b
1
Parent(s):
c9f6e76
Upload SAC Pendulum agent with tuned hyperparameters from Optuna
Browse files- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- sac-pendulum-v1-optuna.zip +3 -0
- sac-pendulum-v1-optuna/_stable_baselines3_version +1 -0
- sac-pendulum-v1-optuna/actor.optimizer.pth +3 -0
- sac-pendulum-v1-optuna/critic.optimizer.pth +3 -0
- sac-pendulum-v1-optuna/data +128 -0
- sac-pendulum-v1-optuna/ent_coef_optimizer.pth +3 -0
- sac-pendulum-v1-optuna/policy.pth +3 -0
- sac-pendulum-v1-optuna/pytorch_variables.pth +3 -0
- sac-pendulum-v1-optuna/system_info.txt +9 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Pendulum-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: SAC
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: Pendulum-v1
|
16 |
+
type: Pendulum-v1
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -119.66 +/- 99.18
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **SAC** Agent playing **Pendulum-v1**
|
25 |
+
This is a trained model of a **SAC** agent playing **Pendulum-v1**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=", "__module__": "stable_baselines3.sac.policies", "__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function SACPolicy.__init__ at 0x7e4523099090>", "_build": "<function SACPolicy._build at 0x7e4523099120>", "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7e45230991b0>", "reset_noise": "<function SACPolicy.reset_noise at 0x7e4523099240>", "make_actor": "<function SACPolicy.make_actor at 0x7e45230992d0>", "make_critic": "<function SACPolicy.make_critic at 0x7e4523099360>", "forward": "<function SACPolicy.forward at 0x7e45230993f0>", "_predict": "<function SACPolicy._predict at 0x7e4523099480>", "set_training_mode": "<function SACPolicy.set_training_mode at 0x7e4523099510>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e45230a3940>"}, "verbose": 0, "policy_kwargs": {"net_arch": [64, 64], "use_sde": false}, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1732205994687603836, "learning_rate": 1.9076243201421694e-05, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAHt+UL0Lq38/BQ5Ev5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAE/8fz9O3i28dV+DvZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="}, "_episode_num": 500, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwF+3fPomoiuMAWyUS8iMAXSUR0C3wyMV1wHadX2UKGgGR7/rJQk5ZKWcaAdLyGgIR0C30lfnKW9ldX2UKGgGR8Bt1h/ZuhsZaAdLyGgIR0C34aZBcAzYdX2UKGgGR8BdjpEDyOJdaAdLyGgIR0C38SdutOmBdX2UKGgGR8BtFl0YCQtBaAdLyGgIR0C4AB1+EytWdX2UKGgGR8BuWC4MF2V3aAdLyGgIR0C4D5OPq9oOdX2UKGgGR8B1qp78ejmCaAdLyGgIR0C4Hq+Zw4sFdX2UKGgGR8BtGuAoXsPbaAdLyGgIR0C4LcIXO4XodX2UKGgGR8Bf2mbsniNsaAdLyGgIR0C4PNm5c1O1dX2UKGgGR8BgEuza9K28aAdLyGgIR0C4TDtjbzshdX2UKGgGR8BgAp9kSVW0aAdLyGgIR0C4W0iXpnpTdX2UKGgGR8Bf46nWJ79iaAdLyGgIR0C4amYcm0E6dX2UKGgGR8BgISOgg5imaAdLyGgIR0C4eXedTYNBdX2UKGgGR8BgO7ollbu/aAdLyGgIR0C4iKxNM496dX2UKGgGR8BucU+qzZ6EaAdLyGgIR0C4l9fc8DB/dX2UKGgGR8B1W+raM72daAdLyGgIR0C4ptiBClabdX2UKGgGR7/yzD4xk/bCaAdLyGgIR0C4this0YTCdX2UKGgGR8Bf4Xm7rcCYaAdLyGgIR0C4xRdI9TxYdX2UKGgGR8BgilTNt65YaAdLyGgIR0C41EZ8WsRydX2UKGgGR8BftU7GNrCWaAdLyGgIR0C440oTXarWdX2UKGgGR8BgSufXf642aAdLyGgIR0C48lgCW/rTdX2UKGgGR8Bf2yElE7W/aAdLyGgIR0C5AU/m9xp+dX2UKGgGR8BgHtYfW+XaaAdLyGgIR0C5EH6FuejEdX2UKGgGR8BfmqpLmITHaAdLyGgIR0C5H2/n8sMBdX2UKGgGR8BgAdx6v7m/aAdLyGgIR0C5Lm/xMFlkdX2UKGgGR8BvyKzZ6D5CaAdLyGgIR0C5PVilSCOFdX2UKGgGR8BgFOce8wpOaAdLyGgIR0C5TLxvBJqZdX2UKGgGR8BtiuKfnOjZaAdLyGgIR0C5XBhcJMQFdX2UKGgGR7/haWHDaXa8aAdLyGgIR0C5a54DgZTAdX2UKGgGR8BfDw1rIo3KaAdLyGgIR0C5evWKyfL+dX2UKGgGR8BgA2wmmce9aAdLyGgIR0C5ihSFTNt7dX2UKGgGR8BgLQ4wRGtqaAdLyGgIR0C5mS318LKFdX2UKGgGR8BgTFtqHoHLaAdLyGgIR0C5qDgDNhVmdX2UKGgGR8BgLKX0Gu9waAdLyGgIR0C5tzTbi6xxdX2UKGgGR8BgHvlOoHcDaAdLyGgIR0C5xlJDJEH/dX2UKGgGR8BgKuEVWS2ZaAdLyGgIR0C51Wjnmq5tdX2UKGgGR8BfOZ4W1twaaAdLyGgIR0C55G5WV/tqdX2UKGgGR8BemOPNmlImaAdLyGgIR0C584lvZRKpdX2UKGgGR8B2c8q6OHWSaAdLyGgIR0C6AprpA2Q5dX2UKGgGR8Bf6ZI6Kcd6aAdLyGgIR0C6EcRlDneSdX2UKGgGR8Be792X9itraAdLyGgIR0C6IMMgyM1kdX2UKGgGR8BdGb+Lm6oVaAdLyGgIR0C6L/uUMXrMdX2UKGgGR7/5Ru89Oh0yaAdLyGgIR0C6PwLOu7pWdX2UKGgGR7/xZuyeI2wWaAdLyGgIR0C6TjmkvboKdX2UKGgGR8Bgb+J3xFy8aAdLyGgIR0C6XTsFQl8gdX2UKGgGR8BufCEUTL4faAdLyGgIR0C6bEtwm3OOdX2UKGgGR8Bu+7ABT4tZaAdLyGgIR0C6e1TufEn9dX2UKGgGR7/x7BfrrxAjaAdLyGgIR0C6imjslb/wdX2UKGgGR8BgHimEXcgyaAdLyGgIR0C6mW/duYQbdX2UKGgGR8BfmN+9alk6aAdLyGgIR0C6qNd+gDigdX2UKGgGR8BgPsOqebuuaAdLyGgIR0C6t9fS+g14dX2UKGgGR8B1beoMrmQsaAdLyGgIR0C6xyMpG4I9dX2UKGgGR8BwPXzkIX0oaAdLyGgIR0C61hOE25xzdX2UKGgGR8BfkBIJ7b+MaAdLyGgIR0C65T6tT1kEdX2UKGgGR8Bt+XYJ3PiUaAdLyGgIR0C69Dm/zreJdX2UKGgGR8BgJwaFVT73aAdLyGgIR0C7A2FeSjgydX2UKGgGR8BgVeNHYpUhaAdLyGgIR0C7EnTvmYBvdX2UKGgGR7/hcL8aXKKYaAdLyGgIR0C7IXI/Z/TcdX2UKGgGR8BfToHLRrrPaAdLyGgIR0C7MJRLXcxkdX2UKGgGR8Btw4valDWtaAdLyGgIR0C7P68oc7yQdX2UKGgGR7/hIzvZyuIRaAdLyGgIR0C7TsqGQCCBdX2UKGgGR8BdW/lZHNHIaAdLyGgIR0C7Xehbr1M/dX2UKGgGR8BgbVMmF8G+aAdLyGgIR0C7bO8oUi6hdX2UKGgGR8Bf8QVwgkkbaAdLyGgIR0C7fB5f6XSjdX2UKGgGR7/7w0bcXWOIaAdLyGgIR0C7izvUrkKedX2UKGgGR8BfDrD63y7PaAdLyGgIR0C7mkBDXvphdX2UKGgGR8BgPBX8wYceaAdLyGgIR0C7qYYE4ecQdX2UKGgGR8Bvg9+gDifhaAdLyGgIR0C7uK9yksSTdX2UKGgGR8Bfu8nRb8m8aAdLyGgIR0C7x9RISUTtdX2UKGgGR8BwMK08eS0TaAdLyGgIR0C71tvllsgudX2UKGgGR8BwicIgNgBtaAdLyGgIR0C75kYuPFNtdX2UKGgGR8BeL/fTCtRvaAdLyGgIR0C79SoqG1x9dX2UKGgGR8Bt24CEHt4SaAdLyGgIR0C8BIz/VAiWdX2UKGgGR8Bsu6KUFB6baAdLyGgIR0C8E5Zx3mmtdX2UKGgGR8Bf+e14Pf8/aAdLyGgIR0C8Ite3+dbxdX2UKGgGR8Bd7mcvugHvaAdLyGgIR0C8MfDBAOawdX2UKGgGR8BgMImXw9aEaAdLyGgIR0C8QSg97ngYdX2UKGgGR7/0F6eGwiaBaAdLyGgIR0C8UFYPPLPldX2UKGgGR8Bcyouf29L6aAdLyGgIR0C8X3uRT0g9dX2UKGgGR8BdS99+gDigaAdLyGgIR0C8bomx+rlvdX2UKGgGR7/tX9JjDsMRaAdLyGgIR0C8fbwlnh86dX2UKGgGR8BeiN/BnBciaAdLyGgIR0C8jPQHeJpGdX2UKGgGR7/7QWrOqvNeaAdLyGgIR0C8m/uEmICVdX2UKGgGR7/zI6XBxgiNaAdLyGgIR0C8qxYCuEEldX2UKGgGR8BfURcmjTKDaAdLyGgIR0C8uhwzDXOGdX2UKGgGR7/5p22Xsw+MaAdLyGgIR0C8yWG4d6sydX2UKGgGR8BgA67ulXRxaAdLyGgIR0C82KIzrNW3dX2UKGgGR8BgaFxhlUZOaAdLyGgIR0C8573FHavidX2UKGgGR8BxCDXiBGx2aAdLyGgIR0C89roWtU4rdX2UKGgGR7/qpQtSQ5mzaAdLyGgIR0C9BfDZtelbdX2UKGgGR7/qce8wpON6aAdLyGgIR0C9FTFbVz6rdX2UKGgGR8BueeepXIU8aAdLyGgIR0C9JHE8/2TQdX2UKGgGR8Bt3OFlCkXUaAdLyGgIR0C9M5PECNjtdX2UKGgGR8BgSkdo371qaAdLyGgIR0C9Qsr+tKZldX2UKGgGR8BekKtLcsUZaAdLyGgIR0C9UgCNbTttdX2UKGgGR7/mrhisny/caAdLyGgIR0C9YTJ0W/JvdX2UKGgGR8BfnFJ6IFeOaAdLyGgIR0C9cEZCa7VbdX2UKGgGR8BgE3HmzSkTaAdLyGgIR0C9f4VxbSqmdX2UKGgGR8BgdIeHSF4+aAdLyGgIR0C9jt31zySWdX2UKGgGR8Bf9Q8bJfY0aAdLyGgIR0C9nf5eu3c6dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 799200, "buffer_size": 100000, "batch_size": 256, "learning_starts": 100, "tau": 0.0005435995778071192, "gamma": 0.9297866969132312, "gradient_steps": 8, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7e452326ff40>", "add": "<function ReplayBuffer.add at 0x7e4523088040>", "sample": "<function ReplayBuffer.sample at 0x7e45230880d0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7e4523088160>", "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7e45230881f0>)>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e4523fd23c0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -1.0, "ent_coef": "auto", "target_update_interval": 1, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVrQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AAAAQZRoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwNWy0xLiAtMS4gLTguXZSMCWhpZ2hfcmVwcpSMClsxLiAxLiA4Ll2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -8.]", "high": "[1. 1. 8.]", "low_repr": "[-1. -1. -8.]", "high_repr": "[1. 1. 8.]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVTAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYBAAAAAAAAAAGUaBVLAYWUaBl0lFKUjAZfc2hhcGWUSwGFlIwDbG93lGgRKJYEAAAAAAAAAAAAAMCUaAtLAYWUaBl0lFKUjARoaWdolGgRKJYEAAAAAAAAAAAAAECUaAtLAYWUaBl0lFKUjAhsb3dfcmVwcpSMBC0yLjCUjAloaWdoX3JlcHKUjAMyLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQlEtnCvUy9v5ERngeS5BZUIwDaW5jlIoQ8QpDkgKYByGvoWuTcVnkQXWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True]", "bounded_above": "[ True]", "_shape": [1], "low": "[-2.]", "high": "[2.]", "low_repr": "-2.0", "high_repr": "2.0", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVqAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+9AC9c22NPIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-6.6.56+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Nov 10 10:07:59 UTC 2024", "Python": "3.10.14", "Stable-Baselines3": "2.1.0", "PyTorch": "2.4.0", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.0", "OpenAI Gym": "0.26.2"}}
|
replay.mp4
ADDED
Binary file (150 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -119.66033280000002, "std_reward": 99.17769580844292, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-11-22T01:13:19.417594"}
|
sac-pendulum-v1-optuna.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8819ddcb3c1fa503814c0fda1ba56cb80d808fb711c2baef1f590903bdedadad
|
3 |
+
size 247139
|
sac-pendulum-v1-optuna/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
sac-pendulum-v1-optuna/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f786b4085ff945e89188c3ba292c8e9c2d7c918b7beab5d95edf6bcb43b1dc53
|
3 |
+
size 43342
|
sac-pendulum-v1-optuna/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ac105901cdff03c323434e63008c9b92e0e62b88ff6862ddb6e29537a5db61e
|
3 |
+
size 82794
|
sac-pendulum-v1-optuna/data
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.sac.policies",
|
6 |
+
"__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}",
|
7 |
+
"__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
8 |
+
"__init__": "<function SACPolicy.__init__ at 0x7e4523099090>",
|
9 |
+
"_build": "<function SACPolicy._build at 0x7e4523099120>",
|
10 |
+
"_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7e45230991b0>",
|
11 |
+
"reset_noise": "<function SACPolicy.reset_noise at 0x7e4523099240>",
|
12 |
+
"make_actor": "<function SACPolicy.make_actor at 0x7e45230992d0>",
|
13 |
+
"make_critic": "<function SACPolicy.make_critic at 0x7e4523099360>",
|
14 |
+
"forward": "<function SACPolicy.forward at 0x7e45230993f0>",
|
15 |
+
"_predict": "<function SACPolicy._predict at 0x7e4523099480>",
|
16 |
+
"set_training_mode": "<function SACPolicy.set_training_mode at 0x7e4523099510>",
|
17 |
+
"__abstractmethods__": "frozenset()",
|
18 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e45230a3940>"
|
19 |
+
},
|
20 |
+
"verbose": 0,
|
21 |
+
"policy_kwargs": {
|
22 |
+
"net_arch": [
|
23 |
+
64,
|
24 |
+
64
|
25 |
+
],
|
26 |
+
"use_sde": false
|
27 |
+
},
|
28 |
+
"num_timesteps": 100000,
|
29 |
+
"_total_timesteps": 100000,
|
30 |
+
"_num_timesteps_at_start": 0,
|
31 |
+
"seed": null,
|
32 |
+
"action_noise": null,
|
33 |
+
"start_time": 1732205994687603836,
|
34 |
+
"learning_rate": 1.9076243201421694e-05,
|
35 |
+
"tensorboard_log": null,
|
36 |
+
"_last_obs": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAHt+UL0Lq38/BQ5Ev5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="
|
39 |
+
},
|
40 |
+
"_last_episode_starts": {
|
41 |
+
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
43 |
+
},
|
44 |
+
"_last_original_obs": {
|
45 |
+
":type:": "<class 'numpy.ndarray'>",
|
46 |
+
":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAE/8fz9O3i28dV+DvZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="
|
47 |
+
},
|
48 |
+
"_episode_num": 500,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwF+3fPomoiuMAWyUS8iMAXSUR0C3wyMV1wHadX2UKGgGR7/rJQk5ZKWcaAdLyGgIR0C30lfnKW9ldX2UKGgGR8Bt1h/ZuhsZaAdLyGgIR0C34aZBcAzYdX2UKGgGR8BdjpEDyOJdaAdLyGgIR0C38SdutOmBdX2UKGgGR8BtFl0YCQtBaAdLyGgIR0C4AB1+EytWdX2UKGgGR8BuWC4MF2V3aAdLyGgIR0C4D5OPq9oOdX2UKGgGR8B1qp78ejmCaAdLyGgIR0C4Hq+Zw4sFdX2UKGgGR8BtGuAoXsPbaAdLyGgIR0C4LcIXO4XodX2UKGgGR8Bf2mbsniNsaAdLyGgIR0C4PNm5c1O1dX2UKGgGR8BgEuza9K28aAdLyGgIR0C4TDtjbzshdX2UKGgGR8BgAp9kSVW0aAdLyGgIR0C4W0iXpnpTdX2UKGgGR8Bf46nWJ79iaAdLyGgIR0C4amYcm0E6dX2UKGgGR8BgISOgg5imaAdLyGgIR0C4eXedTYNBdX2UKGgGR8BgO7ollbu/aAdLyGgIR0C4iKxNM496dX2UKGgGR8BucU+qzZ6EaAdLyGgIR0C4l9fc8DB/dX2UKGgGR8B1W+raM72daAdLyGgIR0C4ptiBClabdX2UKGgGR7/yzD4xk/bCaAdLyGgIR0C4this0YTCdX2UKGgGR8Bf4Xm7rcCYaAdLyGgIR0C4xRdI9TxYdX2UKGgGR8BgilTNt65YaAdLyGgIR0C41EZ8WsRydX2UKGgGR8BftU7GNrCWaAdLyGgIR0C440oTXarWdX2UKGgGR8BgSufXf642aAdLyGgIR0C48lgCW/rTdX2UKGgGR8Bf2yElE7W/aAdLyGgIR0C5AU/m9xp+dX2UKGgGR8BgHtYfW+XaaAdLyGgIR0C5EH6FuejEdX2UKGgGR8BfmqpLmITHaAdLyGgIR0C5H2/n8sMBdX2UKGgGR8BgAdx6v7m/aAdLyGgIR0C5Lm/xMFlkdX2UKGgGR8BvyKzZ6D5CaAdLyGgIR0C5PVilSCOFdX2UKGgGR8BgFOce8wpOaAdLyGgIR0C5TLxvBJqZdX2UKGgGR8BtiuKfnOjZaAdLyGgIR0C5XBhcJMQFdX2UKGgGR7/haWHDaXa8aAdLyGgIR0C5a54DgZTAdX2UKGgGR8BfDw1rIo3KaAdLyGgIR0C5evWKyfL+dX2UKGgGR8BgA2wmmce9aAdLyGgIR0C5ihSFTNt7dX2UKGgGR8BgLQ4wRGtqaAdLyGgIR0C5mS318LKFdX2UKGgGR8BgTFtqHoHLaAdLyGgIR0C5qDgDNhVmdX2UKGgGR8BgLKX0Gu9waAdLyGgIR0C5tzTbi6xxdX2UKGgGR8BgHvlOoHcDaAdLyGgIR0C5xlJDJEH/dX2UKGgGR8BgKuEVWS2ZaAdLyGgIR0C51Wjnmq5tdX2UKGgGR8BfOZ4W1twaaAdLyGgIR0C55G5WV/tqdX2UKGgGR8BemOPNmlImaAdLyGgIR0C584lvZRKpdX2UKGgGR8B2c8q6OHWSaAdLyGgIR0C6AprpA2Q5dX2UKGgGR8Bf6ZI6Kcd6aAdLyGgIR0C6EcRlDneSdX2UKGgGR8Be792X9itraAdLyGgIR0C6IMMgyM1kdX2UKGgGR8BdGb+Lm6oVaAdLyGgIR0C6L/uUMXrMdX2UKGgGR7/5Ru89Oh0yaAdLyGgIR0C6PwLOu7pWdX2UKGgGR7/xZuyeI2wWaAdLyGgIR0C6TjmkvboKdX2UKGgGR8Bgb+J3xFy8aAdLyGgIR0C6XTsFQl8gdX2UKGgGR8BufCEUTL4faAdLyGgIR0C6bEtwm3OOdX2UKGgGR8Bu+7ABT4tZaAdLyGgIR0C6e1TufEn9dX2UKGgGR7/x7BfrrxAjaAdLyGgIR0C6imjslb/wdX2UKGgGR8BgHimEXcgyaAdLyGgIR0C6mW/duYQbdX2UKGgGR8BfmN+9alk6aAdLyGgIR0C6qNd+gDigdX2UKGgGR8BgPsOqebuuaAdLyGgIR0C6t9fS+g14dX2UKGgGR8B1beoMrmQsaAdLyGgIR0C6xyMpG4I9dX2UKGgGR8BwPXzkIX0oaAdLyGgIR0C61hOE25xzdX2UKGgGR8BfkBIJ7b+MaAdLyGgIR0C65T6tT1kEdX2UKGgGR8Bt+XYJ3PiUaAdLyGgIR0C69Dm/zreJdX2UKGgGR8BgJwaFVT73aAdLyGgIR0C7A2FeSjgydX2UKGgGR8BgVeNHYpUhaAdLyGgIR0C7EnTvmYBvdX2UKGgGR7/hcL8aXKKYaAdLyGgIR0C7IXI/Z/TcdX2UKGgGR8BfToHLRrrPaAdLyGgIR0C7MJRLXcxkdX2UKGgGR8Btw4valDWtaAdLyGgIR0C7P68oc7yQdX2UKGgGR7/hIzvZyuIRaAdLyGgIR0C7TsqGQCCBdX2UKGgGR8BdW/lZHNHIaAdLyGgIR0C7Xehbr1M/dX2UKGgGR8BgbVMmF8G+aAdLyGgIR0C7bO8oUi6hdX2UKGgGR8Bf8QVwgkkbaAdLyGgIR0C7fB5f6XSjdX2UKGgGR7/7w0bcXWOIaAdLyGgIR0C7izvUrkKedX2UKGgGR8BfDrD63y7PaAdLyGgIR0C7mkBDXvphdX2UKGgGR8BgPBX8wYceaAdLyGgIR0C7qYYE4ecQdX2UKGgGR8Bvg9+gDifhaAdLyGgIR0C7uK9yksSTdX2UKGgGR8Bfu8nRb8m8aAdLyGgIR0C7x9RISUTtdX2UKGgGR8BwMK08eS0TaAdLyGgIR0C71tvllsgudX2UKGgGR8BwicIgNgBtaAdLyGgIR0C75kYuPFNtdX2UKGgGR8BeL/fTCtRvaAdLyGgIR0C79SoqG1x9dX2UKGgGR8Bt24CEHt4SaAdLyGgIR0C8BIz/VAiWdX2UKGgGR8Bsu6KUFB6baAdLyGgIR0C8E5Zx3mmtdX2UKGgGR8Bf+e14Pf8/aAdLyGgIR0C8Ite3+dbxdX2UKGgGR8Bd7mcvugHvaAdLyGgIR0C8MfDBAOawdX2UKGgGR8BgMImXw9aEaAdLyGgIR0C8QSg97ngYdX2UKGgGR7/0F6eGwiaBaAdLyGgIR0C8UFYPPLPldX2UKGgGR8Bcyouf29L6aAdLyGgIR0C8X3uRT0g9dX2UKGgGR8BdS99+gDigaAdLyGgIR0C8bomx+rlvdX2UKGgGR7/tX9JjDsMRaAdLyGgIR0C8fbwlnh86dX2UKGgGR8BeiN/BnBciaAdLyGgIR0C8jPQHeJpGdX2UKGgGR7/7QWrOqvNeaAdLyGgIR0C8m/uEmICVdX2UKGgGR7/zI6XBxgiNaAdLyGgIR0C8qxYCuEEldX2UKGgGR8BfURcmjTKDaAdLyGgIR0C8uhwzDXOGdX2UKGgGR7/5p22Xsw+MaAdLyGgIR0C8yWG4d6sydX2UKGgGR8BgA67ulXRxaAdLyGgIR0C82KIzrNW3dX2UKGgGR8BgaFxhlUZOaAdLyGgIR0C8573FHavidX2UKGgGR8BxCDXiBGx2aAdLyGgIR0C89roWtU4rdX2UKGgGR7/qpQtSQ5mzaAdLyGgIR0C9BfDZtelbdX2UKGgGR7/qce8wpON6aAdLyGgIR0C9FTFbVz6rdX2UKGgGR8BueeepXIU8aAdLyGgIR0C9JHE8/2TQdX2UKGgGR8Bt3OFlCkXUaAdLyGgIR0C9M5PECNjtdX2UKGgGR8BgSkdo371qaAdLyGgIR0C9Qsr+tKZldX2UKGgGR8BekKtLcsUZaAdLyGgIR0C9UgCNbTttdX2UKGgGR7/mrhisny/caAdLyGgIR0C9YTJ0W/JvdX2UKGgGR8BfnFJ6IFeOaAdLyGgIR0C9cEZCa7VbdX2UKGgGR8BgE3HmzSkTaAdLyGgIR0C9f4VxbSqmdX2UKGgGR8BgdIeHSF4+aAdLyGgIR0C9jt31zySWdX2UKGgGR8Bf9Q8bJfY0aAdLyGgIR0C9nf5eu3c6dWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 799200,
|
62 |
+
"buffer_size": 100000,
|
63 |
+
"batch_size": 256,
|
64 |
+
"learning_starts": 100,
|
65 |
+
"tau": 0.0005435995778071192,
|
66 |
+
"gamma": 0.9297866969132312,
|
67 |
+
"gradient_steps": 8,
|
68 |
+
"optimize_memory_usage": false,
|
69 |
+
"replay_buffer_class": {
|
70 |
+
":type:": "<class 'abc.ABCMeta'>",
|
71 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
72 |
+
"__module__": "stable_baselines3.common.buffers",
|
73 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
74 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7e452326ff40>",
|
75 |
+
"add": "<function ReplayBuffer.add at 0x7e4523088040>",
|
76 |
+
"sample": "<function ReplayBuffer.sample at 0x7e45230880d0>",
|
77 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7e4523088160>",
|
78 |
+
"_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7e45230881f0>)>",
|
79 |
+
"__abstractmethods__": "frozenset()",
|
80 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e4523fd23c0>"
|
81 |
+
},
|
82 |
+
"replay_buffer_kwargs": {},
|
83 |
+
"train_freq": {
|
84 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
85 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
86 |
+
},
|
87 |
+
"use_sde_at_warmup": false,
|
88 |
+
"target_entropy": -1.0,
|
89 |
+
"ent_coef": "auto",
|
90 |
+
"target_update_interval": 1,
|
91 |
+
"observation_space": {
|
92 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
93 |
+
":serialized:": "gAWVrQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AAAAQZRoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwNWy0xLiAtMS4gLTguXZSMCWhpZ2hfcmVwcpSMClsxLiAxLiA4Ll2UjApfbnBfcmFuZG9tlE51Yi4=",
|
94 |
+
"dtype": "float32",
|
95 |
+
"bounded_below": "[ True True True]",
|
96 |
+
"bounded_above": "[ True True True]",
|
97 |
+
"_shape": [
|
98 |
+
3
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -8.]",
|
101 |
+
"high": "[1. 1. 8.]",
|
102 |
+
"low_repr": "[-1. -1. -8.]",
|
103 |
+
"high_repr": "[1. 1. 8.]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"action_space": {
|
107 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
108 |
+
":serialized:": "gAWVTAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYBAAAAAAAAAAGUaBVLAYWUaBl0lFKUjAZfc2hhcGWUSwGFlIwDbG93lGgRKJYEAAAAAAAAAAAAAMCUaAtLAYWUaBl0lFKUjARoaWdolGgRKJYEAAAAAAAAAAAAAECUaAtLAYWUaBl0lFKUjAhsb3dfcmVwcpSMBC0yLjCUjAloaWdoX3JlcHKUjAMyLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQlEtnCvUy9v5ERngeS5BZUIwDaW5jlIoQ8QpDkgKYByGvoWuTcVnkQXWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
|
109 |
+
"dtype": "float32",
|
110 |
+
"bounded_below": "[ True]",
|
111 |
+
"bounded_above": "[ True]",
|
112 |
+
"_shape": [
|
113 |
+
1
|
114 |
+
],
|
115 |
+
"low": "[-2.]",
|
116 |
+
"high": "[2.]",
|
117 |
+
"low_repr": "-2.0",
|
118 |
+
"high_repr": "2.0",
|
119 |
+
"_np_random": "Generator(PCG64)"
|
120 |
+
},
|
121 |
+
"n_envs": 1,
|
122 |
+
"lr_schedule": {
|
123 |
+
":type:": "<class 'function'>",
|
124 |
+
":serialized:": "gAWVqAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+9AC9c22NPIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
125 |
+
},
|
126 |
+
"batch_norm_stats": [],
|
127 |
+
"batch_norm_stats_target": []
|
128 |
+
}
|
sac-pendulum-v1-optuna/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:279492b32e4019130c667f9b76ae1d12439b96e9106bb524c5546c184a62e305
|
3 |
+
size 1940
|
sac-pendulum-v1-optuna/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:146da7d374e65d2bf0feb967e362b6dc2d5725f208b1edab9fed514a84a984c4
|
3 |
+
size 102262
|
sac-pendulum-v1-optuna/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2123246792be02a1979869f842ea9ae10e1749132e57f56c2aae1d7cf460f5bd
|
3 |
+
size 1180
|
sac-pendulum-v1-optuna/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.6.56+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Nov 10 10:07:59 UTC 2024
|
2 |
+
- Python: 3.10.14
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.4.0
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.0.0
|
8 |
+
- Gymnasium: 0.29.0
|
9 |
+
- OpenAI Gym: 0.26.2
|