File size: 2,594 Bytes
ed5a3e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2172a86
ed5a3e7
 
 
 
 
 
 
 
 
56a2f40
2172a86
ed5a3e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2172a86
 
ed5a3e7
2172a86
56a2f40
 
 
ed5a3e7
 
 
56a2f40
ed5a3e7
 
 
 
56a2f40
 
 
 
 
 
 
 
 
 
 
 
ed5a3e7
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
library_name: transformers
license: mit
base_model: distil-whisper/distil-medium.en
tags:
- generated_from_trainer
datasets:
- speech_commands
metrics:
- accuracy
model-index:
- name: distil-medium.en-ft-kws-speech-commands
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: Speech Commands
      type: speech_commands
      config: v0.02
      split: test
      args: v0.02
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8066546762589928
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distil-medium.en-ft-kws-speech-commands

This model is a fine-tuned version of [distil-whisper/distil-medium.en](https://huggingface.co/distil-whisper/distil-medium.en) on the Speech Commands dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6851
- Accuracy: 0.8067

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.1179        | 1.0   | 1236  | 0.8986          | 0.7990   |
| 0.1177        | 2.0   | 2472  | 0.8863          | 0.8008   |
| 0.0953        | 3.0   | 3708  | 0.9958          | 0.8031   |
| 0.1288        | 4.0   | 4944  | 1.0659          | 0.8017   |
| 0.0575        | 5.0   | 6180  | 1.1709          | 0.8026   |
| 0.0011        | 6.0   | 7416  | 1.1123          | 0.8049   |
| 0.0005        | 7.0   | 8652  | 1.2285          | 0.8049   |
| 0.0006        | 8.0   | 9888  | 1.3904          | 0.8058   |
| 0.001         | 9.0   | 11124 | 1.4603          | 0.8067   |
| 0.0001        | 10.0  | 12360 | 1.6851          | 0.8067   |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3