distil-medium.en-ft-kws-speech-commands

This model is a fine-tuned version of distil-whisper/distil-medium.en on the Speech Commands dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6851
  • Accuracy: 0.8067

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1179 1.0 1236 0.8986 0.7990
0.1177 2.0 2472 0.8863 0.8008
0.0953 3.0 3708 0.9958 0.8031
0.1288 4.0 4944 1.0659 0.8017
0.0575 5.0 6180 1.1709 0.8026
0.0011 6.0 7416 1.1123 0.8049
0.0005 7.0 8652 1.2285 0.8049
0.0006 8.0 9888 1.3904 0.8058
0.001 9.0 11124 1.4603 0.8067
0.0001 10.0 12360 1.6851 0.8067

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
14
Safetensors
Model size
307M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for world-of-june/distil-medium.en-ft-kws-speech-commands

Finetuned
(5)
this model

Dataset used to train world-of-june/distil-medium.en-ft-kws-speech-commands

Evaluation results