Wisenut-LLaMA-3.1-8B-SFT-DPO

This model is a fine-tuned version of wisenut-nlp-team/Wisenut-LLaMA-3.1-8B-SFT on the dpo_90k dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 1.0

Training results

Framework versions

  • PEFT 0.12.0
  • Transformers 4.46.1
  • Pytorch 2.3.0a0+ebedce2
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
15
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for wisenut-nlp-team/Wisenut-LLaMA-3.1-8B-SFT-LoRA-DPO

Adapter
(1)
this model