flash-stu / model.py
windsornguyen's picture
Upload FlashSTU
93d11ff verified
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PreTrainedModel
from stu import STU
from modules import Attention
from utils import get_spectral_filters, nearest_power_of_two
from flash_stu.config import FlashSTUConfig
try:
from flashfftconv import FlashFFTConv
flash_fft_available = True
except ImportError as e:
print(f"Unable to import FlashFFTConv: {e}. Falling back to PyTorch implementation.")
flash_fft_available = False
try:
from flash_attn.modules.mlp import GatedMlp as MLP
triton_mlp = True
except ImportError as e:
print(f"Unable to import Triton-based MLP: {e}. Falling back to vanilla SwiGLU MLP instead.")
from modules import MLP
triton_mlp = False
try:
from flash_attn.ops.triton.layer_norm import RMSNorm
except ImportError as e:
print(f"Unable to import Triton-based RMSNorm: {e}. Falling back to PyTorch implementation.")
from torch.nn import RMSNorm
try:
from flash_attn.losses.cross_entropy import CrossEntropyLoss
except ImportError as e:
print(f"Unable to import Triton-based cross entropy loss: {e}. Falling back to PyTorch implementation.")
from torch.nn import CrossEntropyLoss
class Block(nn.Module):
def __init__(self, config, phi, n, flash_fft) -> None:
super(Block, self).__init__()
# For more complex %-split arrangements, see https://arxiv.org/pdf/2406.07887
self.rn_1 = RMSNorm(config.n_embd)
self.stu = STU(config, phi, n, flash_fft)
self.rn_2 = RMSNorm(config.n_embd)
self.attn = Attention(config)
self.rn_3 = RMSNorm(config.n_embd)
self.mlp = MLP(
config.n_embd,
config.n_embd * config.mlp_scale,
activation=F.silu, # Use SwiGLU
bias1=config.bias,
bias2=config.bias,
) if triton_mlp else MLP(config)
self.rn_4 = RMSNorm(config.n_embd)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x + self.stu(self.rn_1(x))
x = x + self.mlp(self.rn_2(x))
x = x + self.attn(self.rn_3(x))
x = x + self.mlp(self.rn_4(x))
return x
class FlashSTU(PreTrainedModel):
config_class = FlashSTUConfig
def __init__(self, config) -> None:
super(FlashSTU, self).__init__(config)
self.config = config
self.n_layers = config.n_layers
self.n_embd = config.n_embd
self.mlp_scale = config.mlp_scale
self.seq_len = config.seq_len
self.n = nearest_power_of_two(self.seq_len * 2 - 1, round_up=True)
self.vocab_size = config.vocab_size
self.K = config.num_eigh
self.use_hankel_L = config.use_hankel_L
self.phi = get_spectral_filters(self.seq_len, self.K, self.use_hankel_L)
self.use_approx = config.use_approx
self.flash_fft = (
FlashFFTConv(self.n, dtype=torch.bfloat16)
if config.use_flash_fft and flash_fft_available
else None
)
self.dropout = config.dropout
self.bias = config.bias
self.loss_fn = CrossEntropyLoss()
self.flash_stu = nn.ModuleDict(
dict(
tok_emb=nn.Embedding(self.vocab_size, self.n_embd),
dropout=nn.Dropout(self.dropout),
hidden=nn.ModuleList(
[
Block(self.config, self.phi, self.n, self.flash_fft)
for _ in range(self.n_layers)
]
),
rn_f=RMSNorm(config.n_embd)
)
)
self.lm_head = nn.Linear(self.n_embd, self.vocab_size, bias=self.bias)
self.std = (self.n_embd) ** -0.5
self.apply(self._init_weights)
print("Model Parameter Count: %.2fM\n" % (self._get_num_params() / 1e6,))
def forward(self, x: torch.Tensor) -> torch.tensor:
tok_emb = self.flash_stu.tok_emb(x)
x = self.flash_stu.dropout(tok_emb)
for block in self.flash_stu.hidden:
x = block(x)
x = self.flash_stu.rn_f(x)
y_hat = self.lm_head(x)
return y_hat
def _get_num_params(self):
n_params = sum(p.numel() for p in self.parameters())
return n_params
def _init_weights(self, module):
if isinstance(module, nn.Linear):
if hasattr(module, "SCALE_INIT"):
self.std *= (2 * self.n_layers) ** -0.5
torch.nn.init.normal_(module.weight, mean=0.0, std=self.std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=self.std)
elif isinstance(module, STU):
if self.use_approx:
torch.nn.init.xavier_normal_(module.M_inputs)
torch.nn.init.xavier_normal_(module.M_filters)
else:
torch.nn.init.xavier_normal_(module.M_phi_plus)
torch.nn.init.xavier_normal_(module.M_phi_minus)