import torch import torch.nn as nn import torch.nn.functional as F from transformers import PreTrainedModel from stu import STU from modules import Attention from utils import get_spectral_filters, nearest_power_of_two from flash_stu.config import FlashSTUConfig try: from flashfftconv import FlashFFTConv flash_fft_available = True except ImportError as e: print(f"Unable to import FlashFFTConv: {e}. Falling back to PyTorch implementation.") flash_fft_available = False try: from flash_attn.modules.mlp import GatedMlp as MLP triton_mlp = True except ImportError as e: print(f"Unable to import Triton-based MLP: {e}. Falling back to vanilla SwiGLU MLP instead.") from modules import MLP triton_mlp = False try: from flash_attn.ops.triton.layer_norm import RMSNorm except ImportError as e: print(f"Unable to import Triton-based RMSNorm: {e}. Falling back to PyTorch implementation.") from torch.nn import RMSNorm try: from flash_attn.losses.cross_entropy import CrossEntropyLoss except ImportError as e: print(f"Unable to import Triton-based cross entropy loss: {e}. Falling back to PyTorch implementation.") from torch.nn import CrossEntropyLoss class Block(nn.Module): def __init__(self, config, phi, n, flash_fft) -> None: super(Block, self).__init__() # For more complex %-split arrangements, see https://arxiv.org/pdf/2406.07887 self.rn_1 = RMSNorm(config.n_embd) self.stu = STU(config, phi, n, flash_fft) self.rn_2 = RMSNorm(config.n_embd) self.attn = Attention(config) self.rn_3 = RMSNorm(config.n_embd) self.mlp = MLP( config.n_embd, config.n_embd * config.mlp_scale, activation=F.silu, # Use SwiGLU bias1=config.bias, bias2=config.bias, ) if triton_mlp else MLP(config) self.rn_4 = RMSNorm(config.n_embd) def forward(self, x: torch.Tensor) -> torch.Tensor: x = x + self.stu(self.rn_1(x)) x = x + self.mlp(self.rn_2(x)) x = x + self.attn(self.rn_3(x)) x = x + self.mlp(self.rn_4(x)) return x class FlashSTU(PreTrainedModel): config_class = FlashSTUConfig def __init__(self, config) -> None: super(FlashSTU, self).__init__(config) self.config = config self.n_layers = config.n_layers self.n_embd = config.n_embd self.mlp_scale = config.mlp_scale self.seq_len = config.seq_len self.n = nearest_power_of_two(self.seq_len * 2 - 1, round_up=True) self.vocab_size = config.vocab_size self.K = config.num_eigh self.use_hankel_L = config.use_hankel_L self.phi = get_spectral_filters(self.seq_len, self.K, self.use_hankel_L) self.use_approx = config.use_approx self.flash_fft = ( FlashFFTConv(self.n, dtype=torch.bfloat16) if config.use_flash_fft and flash_fft_available else None ) self.dropout = config.dropout self.bias = config.bias self.loss_fn = CrossEntropyLoss() self.flash_stu = nn.ModuleDict( dict( tok_emb=nn.Embedding(self.vocab_size, self.n_embd), dropout=nn.Dropout(self.dropout), hidden=nn.ModuleList( [ Block(self.config, self.phi, self.n, self.flash_fft) for _ in range(self.n_layers) ] ), rn_f=RMSNorm(config.n_embd) ) ) self.lm_head = nn.Linear(self.n_embd, self.vocab_size, bias=self.bias) self.std = (self.n_embd) ** -0.5 self.apply(self._init_weights) print("Model Parameter Count: %.2fM\n" % (self._get_num_params() / 1e6,)) def forward(self, x: torch.Tensor) -> torch.tensor: tok_emb = self.flash_stu.tok_emb(x) x = self.flash_stu.dropout(tok_emb) for block in self.flash_stu.hidden: x = block(x) x = self.flash_stu.rn_f(x) y_hat = self.lm_head(x) return y_hat def _get_num_params(self): n_params = sum(p.numel() for p in self.parameters()) return n_params def _init_weights(self, module): if isinstance(module, nn.Linear): if hasattr(module, "SCALE_INIT"): self.std *= (2 * self.n_layers) ** -0.5 torch.nn.init.normal_(module.weight, mean=0.0, std=self.std) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=self.std) elif isinstance(module, STU): if self.use_approx: torch.nn.init.xavier_normal_(module.M_inputs) torch.nn.init.xavier_normal_(module.M_filters) else: torch.nn.init.xavier_normal_(module.M_phi_plus) torch.nn.init.xavier_normal_(module.M_phi_minus)