|
import torch |
|
import torch.nn as nn |
|
|
|
from transformers import PreTrainedModel |
|
|
|
from stu import STU |
|
from modules_stu import Attention |
|
from utils import nearest_power_of_two |
|
from flash_stu.config import FlashSTUConfig |
|
|
|
try: |
|
from liger_kernel.transformers.swiglu import LigerSwiGLUMLP as TritonMLP |
|
triton_mlp = True |
|
except ImportError as e: |
|
print(f"Unable to import Triton-based MLP: {e}. Falling back to vanilla SwiGLU MLP instead.") |
|
from modules import MLP |
|
triton_mlp = False |
|
|
|
try: |
|
from liger_kernel.transformers.rms_norm import LigerRMSNorm as TritonNorm |
|
triton_norm = True |
|
except ImportError as e: |
|
print(f"Unable to import Triton-based RMSNorm: {e}. Falling back to PyTorch implementation.") |
|
from torch.nn import RMSNorm |
|
triton_norm = False |
|
|
|
class STULayer(nn.Module): |
|
def __init__(self, config, phi, n): |
|
super(STULayer, self).__init__() |
|
self.stu_norm = TritonNorm(config.n_embd) if triton_norm else RMSNorm(config.n_embd, dtype=config.torch_dtype) |
|
self.stu = STU(config, phi, n) |
|
self.mlp_norm = TritonNorm(config.n_embd) if triton_norm else RMSNorm(config.n_embd, dtype=config.torch_dtype) |
|
self.mlp = TritonMLP(config) if triton_mlp else MLP(config, dtype=config.torch_dtype) |
|
|
|
|
|
self.stu_norm = self.stu_norm.to(dtype=config.torch_dtype) |
|
self.mlp = self.mlp.to(dtype=config.torch_dtype) |
|
self.mlp_norm = self.mlp_norm.to(dtype=config.torch_dtype) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = x + self.stu(self.stu_norm(x)) |
|
x = x + self.mlp(self.mlp_norm(x)) |
|
return x |
|
|
|
class AttentionLayer(nn.Module): |
|
def __init__(self, config) -> None: |
|
super(AttentionLayer, self).__init__() |
|
self.attn_norm = TritonNorm(config.n_embd) if triton_norm else RMSNorm(config.n_embd, dtype=config.torch_dtype) |
|
self.attn = Attention(config) |
|
self.mlp_norm = TritonNorm(config.n_embd) if triton_norm else RMSNorm(config.n_embd, dtype=config.torch_dtype) |
|
self.mlp = TritonMLP(config) if triton_mlp else MLP(config, dtype=config.torch_dtype) |
|
|
|
|
|
self.attn_norm = self.attn_norm.to(dtype=config.torch_dtype) |
|
self.mlp = self.mlp.to(dtype=config.torch_dtype) |
|
self.mlp_norm = self.mlp_norm.to(dtype=config.torch_dtype) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = x + self.attn(self.attn_norm(x)) |
|
x = x + self.mlp(self.mlp_norm(x)) |
|
return x |
|
|
|
class FlashSTU(PreTrainedModel): |
|
config_class = FlashSTUConfig |
|
|
|
def __init__(self, config, phi) -> None: |
|
super(FlashSTU, self).__init__(config) |
|
self.n_layers = config.n_layers |
|
self.n = nearest_power_of_two(config.seq_len * 2 - 1, round_up=True) |
|
self.phi = phi |
|
self.use_approx = config.use_approx |
|
|
|
|
|
self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd, dtype=config.torch_dtype) |
|
self.dropout = nn.Dropout(config.dropout) |
|
|
|
self.layers = nn.ModuleList() |
|
for layer_idx in range(self.n_layers): |
|
|
|
if layer_idx % 2 == 0: |
|
self.layers.append(STULayer(config, self.phi, self.n)) |
|
else: |
|
self.layers.append(AttentionLayer(config) if config.use_attn else STULayer(config, self.phi, self.n)) |
|
|
|
self.norm = TritonNorm(config.n_embd) if triton_norm else RMSNorm(config.n_embd, dtype=config.torch_dtype) |
|
|
|
self.norm = self.norm.to(dtype=config.torch_dtype) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=config.bias, dtype=config.torch_dtype) |
|
self.tok_emb.weight = self.lm_head.weight |
|
|
|
self.std = (config.n_embd) ** -0.5 |
|
self.apply(self._init_weights) |
|
print("Model Parameter Count: %.2fM\n" % (self._get_num_params() / 1e6,)) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.tensor: |
|
tok_emb = self.tok_emb(x) |
|
x = self.dropout(tok_emb) |
|
|
|
for layer in self.layers: |
|
x = layer(x) |
|
|
|
x = self.norm(x) |
|
y_hat = self.lm_head(x) |
|
|
|
return y_hat |
|
|
|
def _get_num_params(self): |
|
n_params = sum(p.numel() for p in self.parameters()) |
|
if hasattr(self, "pos_emb") and self.pos_emb is not None: |
|
n_params -= self.pos_emb.weight.numel() |
|
if self.tok_emb.weight is not self.lm_head.weight: |
|
n_params -= self.tok_emb.weight.numel() |
|
return n_params |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
if hasattr(module, "SCALE_INIT"): |
|
self.std *= (2 * self.n_layers) ** -0.5 |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=self.std) |
|
if module.bias is not None: |
|
torch.nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=self.std) |
|
elif isinstance(module, STU): |
|
if self.use_approx: |
|
torch.nn.init.xavier_normal_(module.M_inputs) |
|
torch.nn.init.xavier_normal_(module.M_filters) |
|
else: |
|
torch.nn.init.xavier_normal_(module.M_phi_plus) |
|
torch.nn.init.xavier_normal_(module.M_phi_minus) |
|
elif isinstance(module, Attention): |
|
torch.nn.init.xavier_normal_(module.c_attn.weight) |
|
torch.nn.init.xavier_normal_(module.c_proj.weight) |
|
if module.c_attn.bias is not None: |
|
torch.nn.init.zeros_(module.c_attn.bias) |
|
if module.c_proj.bias is not None: |
|
torch.nn.init.zeros_(module.c_proj.bias) |
|
|