Upload FlashSTU
Browse files- config.json +21 -9
- config.py +9 -5
- model.py +76 -66
- pytorch_model-00001-of-00002.bin +3 -0
- pytorch_model-00002-of-00002.bin +3 -0
- pytorch_model.bin.index.json +296 -0
config.json
CHANGED
@@ -1,18 +1,30 @@
|
|
1 |
{
|
2 |
"architectures": [
|
3 |
-
"
|
4 |
],
|
|
|
|
|
|
|
|
|
5 |
"bias": false,
|
6 |
-
"bsz":
|
7 |
"dropout": 0.0,
|
8 |
-
"
|
9 |
-
"
|
10 |
-
"
|
11 |
-
"
|
12 |
-
"
|
13 |
-
"
|
|
|
|
|
|
|
14 |
"softcap": 50.0,
|
15 |
"torch_dtype": "bfloat16",
|
16 |
"transformers_version": "4.44.0",
|
17 |
-
"
|
|
|
|
|
|
|
|
|
|
|
18 |
}
|
|
|
1 |
{
|
2 |
"architectures": [
|
3 |
+
"FlashSTU"
|
4 |
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "config.FlashSTUConfig",
|
7 |
+
"AutoModel": "model.FlashSTU"
|
8 |
+
},
|
9 |
"bias": false,
|
10 |
+
"bsz": 1,
|
11 |
"dropout": 0.0,
|
12 |
+
"hidden_act": "swish",
|
13 |
+
"hidden_size": 1536,
|
14 |
+
"intermediate_size": 18432,
|
15 |
+
"model_type": "FlashSTU",
|
16 |
+
"n_embd": 1536,
|
17 |
+
"n_heads": 8,
|
18 |
+
"n_layers": 26,
|
19 |
+
"num_eigh": 24,
|
20 |
+
"seq_len": 8192,
|
21 |
"softcap": 50.0,
|
22 |
"torch_dtype": "bfloat16",
|
23 |
"transformers_version": "4.44.0",
|
24 |
+
"use_approx": true,
|
25 |
+
"use_attn": true,
|
26 |
+
"use_flash_fft": true,
|
27 |
+
"use_hankel_L": false,
|
28 |
+
"vocab_size": 200064,
|
29 |
+
"window_size": 1024
|
30 |
}
|
config.py
CHANGED
@@ -8,10 +8,10 @@ class FlashSTUConfig(PretrainedConfig):
|
|
8 |
|
9 |
def __init__(
|
10 |
self,
|
11 |
-
bsz: int =
|
12 |
-
n_embd: int =
|
13 |
-
n_heads: int =
|
14 |
-
n_layers: int =
|
15 |
seq_len: int = 8192,
|
16 |
window_size: int = 1024,
|
17 |
vocab_size: int = 200064,
|
@@ -22,6 +22,7 @@ class FlashSTUConfig(PretrainedConfig):
|
|
22 |
use_hankel_L: bool = False,
|
23 |
use_flash_fft: bool = True,
|
24 |
use_approx: bool = True,
|
|
|
25 |
softcap: float = 50.0,
|
26 |
torch_dtype: torch.dtype = torch.bfloat16,
|
27 |
**kwargs,
|
@@ -34,12 +35,15 @@ class FlashSTUConfig(PretrainedConfig):
|
|
34 |
self.seq_len = seq_len
|
35 |
self.window_size = window_size
|
36 |
self.vocab_size = vocab_size
|
37 |
-
self.
|
|
|
|
|
38 |
self.bias = bias
|
39 |
self.dropout = dropout
|
40 |
self.num_eigh = num_eigh
|
41 |
self.use_hankel_L = use_hankel_L
|
42 |
self.use_flash_fft = use_flash_fft
|
43 |
self.use_approx = use_approx
|
|
|
44 |
self.softcap = softcap
|
45 |
self.torch_dtype = torch_dtype
|
|
|
8 |
|
9 |
def __init__(
|
10 |
self,
|
11 |
+
bsz: int = 1,
|
12 |
+
n_embd: int = 1536,
|
13 |
+
n_heads: int = 8,
|
14 |
+
n_layers: int = 26,
|
15 |
seq_len: int = 8192,
|
16 |
window_size: int = 1024,
|
17 |
vocab_size: int = 200064,
|
|
|
22 |
use_hankel_L: bool = False,
|
23 |
use_flash_fft: bool = True,
|
24 |
use_approx: bool = True,
|
25 |
+
use_attn: bool = True,
|
26 |
softcap: float = 50.0,
|
27 |
torch_dtype: torch.dtype = torch.bfloat16,
|
28 |
**kwargs,
|
|
|
35 |
self.seq_len = seq_len
|
36 |
self.window_size = window_size
|
37 |
self.vocab_size = vocab_size
|
38 |
+
self.hidden_size = n_embd
|
39 |
+
self.intermediate_size = n_embd * mlp_scale
|
40 |
+
self.hidden_act = "swish"
|
41 |
self.bias = bias
|
42 |
self.dropout = dropout
|
43 |
self.num_eigh = num_eigh
|
44 |
self.use_hankel_L = use_hankel_L
|
45 |
self.use_flash_fft = use_flash_fft
|
46 |
self.use_approx = use_approx
|
47 |
+
self.use_attn = use_attn
|
48 |
self.softcap = softcap
|
49 |
self.torch_dtype = torch_dtype
|
model.py
CHANGED
@@ -1,16 +1,15 @@
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
|
5 |
from transformers import PreTrainedModel
|
6 |
|
7 |
from stu import STU
|
8 |
-
from
|
9 |
-
from utils import
|
10 |
from flash_stu.config import FlashSTUConfig
|
11 |
|
12 |
try:
|
13 |
-
from
|
14 |
triton_mlp = True
|
15 |
except ImportError as e:
|
16 |
print(f"Unable to import Triton-based MLP: {e}. Falling back to vanilla SwiGLU MLP instead.")
|
@@ -18,95 +17,99 @@ except ImportError as e:
|
|
18 |
triton_mlp = False
|
19 |
|
20 |
try:
|
21 |
-
from
|
|
|
22 |
except ImportError as e:
|
23 |
print(f"Unable to import Triton-based RMSNorm: {e}. Falling back to PyTorch implementation.")
|
24 |
from torch.nn import RMSNorm
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
from torch.nn import CrossEntropyLoss
|
31 |
-
|
32 |
-
class Block(nn.Module):
|
33 |
-
def __init__(self, config, phi, n) -> None:
|
34 |
-
super(Block, self).__init__()
|
35 |
-
# For more complex %-split arrangements, see https://arxiv.org/pdf/2406.07887
|
36 |
-
self.rn_1 = RMSNorm(config.n_embd, dtype=config.torch_dtype)
|
37 |
self.stu = STU(config, phi, n)
|
38 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
self.attn = Attention(config)
|
40 |
-
self.
|
41 |
-
self.mlp = MLP(
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
dtype=config.torch_dtype,
|
48 |
-
) if triton_mlp else MLP(config, dtype=config.torch_dtype)
|
49 |
-
self.rn_4 = RMSNorm(config.n_embd, dtype=config.torch_dtype)
|
50 |
|
51 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
52 |
-
x = x + self.
|
53 |
-
x = x + self.mlp(self.
|
54 |
-
x = x + self.attn(self.rn_3(x))
|
55 |
-
x = x + self.mlp(self.rn_4(x))
|
56 |
return x
|
57 |
|
58 |
class FlashSTU(PreTrainedModel):
|
59 |
config_class = FlashSTUConfig
|
60 |
|
61 |
-
def __init__(self, config) -> None:
|
62 |
super(FlashSTU, self).__init__(config)
|
63 |
-
self.config = config
|
64 |
self.n_layers = config.n_layers
|
65 |
-
self.
|
66 |
-
self.
|
67 |
-
self.seq_len = config.seq_len
|
68 |
-
self.n = nearest_power_of_two(self.seq_len * 2 - 1, round_up=True)
|
69 |
-
self.vocab_size = config.vocab_size
|
70 |
-
self.K = config.num_eigh
|
71 |
-
self.use_hankel_L = config.use_hankel_L
|
72 |
-
self.phi = get_spectral_filters(self.seq_len, self.K, self.use_hankel_L)
|
73 |
self.use_approx = config.use_approx
|
74 |
-
|
75 |
-
|
76 |
-
self.
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
)
|
91 |
-
self.
|
92 |
-
|
93 |
-
self.std = (
|
94 |
self.apply(self._init_weights)
|
95 |
print("Model Parameter Count: %.2fM\n" % (self._get_num_params() / 1e6,))
|
96 |
|
97 |
def forward(self, x: torch.Tensor) -> torch.tensor:
|
98 |
-
tok_emb = self.
|
99 |
-
x = self.
|
100 |
|
101 |
-
for
|
102 |
-
x =
|
103 |
-
x = self.flash_stu.rn_f(x)
|
104 |
|
|
|
105 |
y_hat = self.lm_head(x)
|
|
|
106 |
return y_hat
|
107 |
|
108 |
def _get_num_params(self):
|
109 |
n_params = sum(p.numel() for p in self.parameters())
|
|
|
|
|
|
|
|
|
110 |
return n_params
|
111 |
|
112 |
def _init_weights(self, module):
|
@@ -125,3 +128,10 @@ class FlashSTU(PreTrainedModel):
|
|
125 |
else:
|
126 |
torch.nn.init.xavier_normal_(module.M_phi_plus)
|
127 |
torch.nn.init.xavier_normal_(module.M_phi_minus)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
|
|
3 |
|
4 |
from transformers import PreTrainedModel
|
5 |
|
6 |
from stu import STU
|
7 |
+
from modules_stu import Attention
|
8 |
+
from utils import nearest_power_of_two
|
9 |
from flash_stu.config import FlashSTUConfig
|
10 |
|
11 |
try:
|
12 |
+
from liger_kernel.transformers.swiglu import LigerSwiGLUMLP as TritonMLP
|
13 |
triton_mlp = True
|
14 |
except ImportError as e:
|
15 |
print(f"Unable to import Triton-based MLP: {e}. Falling back to vanilla SwiGLU MLP instead.")
|
|
|
17 |
triton_mlp = False
|
18 |
|
19 |
try:
|
20 |
+
from liger_kernel.transformers.rms_norm import LigerRMSNorm as TritonNorm
|
21 |
+
triton_norm = True
|
22 |
except ImportError as e:
|
23 |
print(f"Unable to import Triton-based RMSNorm: {e}. Falling back to PyTorch implementation.")
|
24 |
from torch.nn import RMSNorm
|
25 |
+
triton_norm = False
|
26 |
|
27 |
+
class STULayer(nn.Module):
|
28 |
+
def __init__(self, config, phi, n):
|
29 |
+
super(STULayer, self).__init__()
|
30 |
+
self.stu_norm = TritonNorm(config.n_embd) if triton_norm else RMSNorm(config.n_embd, dtype=config.torch_dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
self.stu = STU(config, phi, n)
|
32 |
+
self.mlp_norm = TritonNorm(config.n_embd) if triton_norm else RMSNorm(config.n_embd, dtype=config.torch_dtype)
|
33 |
+
self.mlp = TritonMLP(config) if triton_mlp else MLP(config, dtype=config.torch_dtype)
|
34 |
+
|
35 |
+
# TODO: Write Issue in Liger-Kernel repo to support user-defined dtype for MLP
|
36 |
+
self.stu_norm = self.stu_norm.to(dtype=config.torch_dtype)
|
37 |
+
self.mlp = self.mlp.to(dtype=config.torch_dtype)
|
38 |
+
self.mlp_norm = self.mlp_norm.to(dtype=config.torch_dtype)
|
39 |
+
|
40 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
41 |
+
x = x + self.stu(self.stu_norm(x))
|
42 |
+
x = x + self.mlp(self.mlp_norm(x))
|
43 |
+
return x
|
44 |
+
|
45 |
+
class AttentionLayer(nn.Module):
|
46 |
+
def __init__(self, config) -> None:
|
47 |
+
super(AttentionLayer, self).__init__()
|
48 |
+
self.attn_norm = TritonNorm(config.n_embd) if triton_norm else RMSNorm(config.n_embd, dtype=config.torch_dtype)
|
49 |
self.attn = Attention(config)
|
50 |
+
self.mlp_norm = TritonNorm(config.n_embd) if triton_norm else RMSNorm(config.n_embd, dtype=config.torch_dtype)
|
51 |
+
self.mlp = TritonMLP(config) if triton_mlp else MLP(config, dtype=config.torch_dtype)
|
52 |
+
|
53 |
+
# TODO: Write Issue in Liger-Kernel repo to support user-defined dtype for MLP
|
54 |
+
self.attn_norm = self.attn_norm.to(dtype=config.torch_dtype)
|
55 |
+
self.mlp = self.mlp.to(dtype=config.torch_dtype)
|
56 |
+
self.mlp_norm = self.mlp_norm.to(dtype=config.torch_dtype)
|
|
|
|
|
|
|
57 |
|
58 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
59 |
+
x = x + self.attn(self.attn_norm(x))
|
60 |
+
x = x + self.mlp(self.mlp_norm(x))
|
|
|
|
|
61 |
return x
|
62 |
|
63 |
class FlashSTU(PreTrainedModel):
|
64 |
config_class = FlashSTUConfig
|
65 |
|
66 |
+
def __init__(self, config, phi) -> None:
|
67 |
super(FlashSTU, self).__init__(config)
|
|
|
68 |
self.n_layers = config.n_layers
|
69 |
+
self.n = nearest_power_of_two(config.seq_len * 2 - 1, round_up=True)
|
70 |
+
self.phi = phi
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
self.use_approx = config.use_approx
|
72 |
+
|
73 |
+
# TODO: Add support for Liger-Kernel Embedding once no longer experimental
|
74 |
+
self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd, dtype=config.torch_dtype)
|
75 |
+
self.dropout = nn.Dropout(config.dropout)
|
76 |
+
|
77 |
+
self.layers = nn.ModuleList()
|
78 |
+
for layer_idx in range(self.n_layers):
|
79 |
+
# For more complex %-split arrangements, see https://arxiv.org/pdf/2406.07887
|
80 |
+
if layer_idx % 2 == 0:
|
81 |
+
self.layers.append(STULayer(config, self.phi, self.n))
|
82 |
+
else:
|
83 |
+
self.layers.append(AttentionLayer(config) if config.use_attn else STULayer(config, self.phi, self.n))
|
84 |
+
|
85 |
+
self.norm = TritonNorm(config.n_embd) if triton_norm else RMSNorm(config.n_embd, dtype=config.torch_dtype)
|
86 |
+
# TODO: Write Issue in Liger-Kernel repo to support user-defined dtype for RMS Norm
|
87 |
+
self.norm = self.norm.to(dtype=config.torch_dtype)
|
88 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=config.bias, dtype=config.torch_dtype)
|
89 |
+
self.tok_emb.weight = self.lm_head.weight
|
90 |
+
|
91 |
+
self.std = (config.n_embd) ** -0.5
|
92 |
self.apply(self._init_weights)
|
93 |
print("Model Parameter Count: %.2fM\n" % (self._get_num_params() / 1e6,))
|
94 |
|
95 |
def forward(self, x: torch.Tensor) -> torch.tensor:
|
96 |
+
tok_emb = self.tok_emb(x)
|
97 |
+
x = self.dropout(tok_emb)
|
98 |
|
99 |
+
for layer in self.layers:
|
100 |
+
x = layer(x)
|
|
|
101 |
|
102 |
+
x = self.norm(x)
|
103 |
y_hat = self.lm_head(x)
|
104 |
+
|
105 |
return y_hat
|
106 |
|
107 |
def _get_num_params(self):
|
108 |
n_params = sum(p.numel() for p in self.parameters())
|
109 |
+
if hasattr(self, "pos_emb") and self.pos_emb is not None:
|
110 |
+
n_params -= self.pos_emb.weight.numel()
|
111 |
+
if self.tok_emb.weight is not self.lm_head.weight:
|
112 |
+
n_params -= self.tok_emb.weight.numel()
|
113 |
return n_params
|
114 |
|
115 |
def _init_weights(self, module):
|
|
|
128 |
else:
|
129 |
torch.nn.init.xavier_normal_(module.M_phi_plus)
|
130 |
torch.nn.init.xavier_normal_(module.M_phi_minus)
|
131 |
+
elif isinstance(module, Attention):
|
132 |
+
torch.nn.init.xavier_normal_(module.c_attn.weight)
|
133 |
+
torch.nn.init.xavier_normal_(module.c_proj.weight)
|
134 |
+
if module.c_attn.bias is not None:
|
135 |
+
torch.nn.init.zeros_(module.c_attn.bias)
|
136 |
+
if module.c_proj.bias is not None:
|
137 |
+
torch.nn.init.zeros_(module.c_proj.bias)
|
pytorch_model-00001-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa79518498d1be3c786f3b9c85e1254573b0202d4510491213509f8c9dd6e466
|
3 |
+
size 4982442909
|
pytorch_model-00002-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:995329e769de961be2233233b8544984c2de522c6b2112643d73cabb4503bb69
|
3 |
+
size 358626608
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 5340972032
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
7 |
+
"layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
8 |
+
"layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
9 |
+
"layers.0.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
10 |
+
"layers.0.stu.M_filters": "pytorch_model-00001-of-00002.bin",
|
11 |
+
"layers.0.stu.M_inputs": "pytorch_model-00001-of-00002.bin",
|
12 |
+
"layers.0.stu.flash_fft.f_16_fft": "pytorch_model-00001-of-00002.bin",
|
13 |
+
"layers.0.stu.flash_fft.f_16_ifft": "pytorch_model-00001-of-00002.bin",
|
14 |
+
"layers.0.stu.flash_fft.f_32_fft": "pytorch_model-00001-of-00002.bin",
|
15 |
+
"layers.0.stu.flash_fft.f_32_ifft": "pytorch_model-00001-of-00002.bin",
|
16 |
+
"layers.0.stu.flash_fft.twiddle_factors_fft_16_1K": "pytorch_model-00001-of-00002.bin",
|
17 |
+
"layers.0.stu.flash_fft.twiddle_factors_fft_32_32": "pytorch_model-00001-of-00002.bin",
|
18 |
+
"layers.0.stu.flash_fft.twiddle_factors_ifft_16_1K": "pytorch_model-00001-of-00002.bin",
|
19 |
+
"layers.0.stu.flash_fft.twiddle_factors_ifft_32_32": "pytorch_model-00001-of-00002.bin",
|
20 |
+
"layers.0.stu_norm.weight": "pytorch_model-00001-of-00002.bin",
|
21 |
+
"layers.1.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
22 |
+
"layers.1.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
23 |
+
"layers.1.attn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
24 |
+
"layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
25 |
+
"layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
26 |
+
"layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
27 |
+
"layers.1.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
28 |
+
"layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
29 |
+
"layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
30 |
+
"layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
31 |
+
"layers.10.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
32 |
+
"layers.10.stu.M_filters": "pytorch_model-00001-of-00002.bin",
|
33 |
+
"layers.10.stu.M_inputs": "pytorch_model-00001-of-00002.bin",
|
34 |
+
"layers.10.stu.flash_fft.f_16_fft": "pytorch_model-00001-of-00002.bin",
|
35 |
+
"layers.10.stu.flash_fft.f_16_ifft": "pytorch_model-00001-of-00002.bin",
|
36 |
+
"layers.10.stu.flash_fft.f_32_fft": "pytorch_model-00001-of-00002.bin",
|
37 |
+
"layers.10.stu.flash_fft.f_32_ifft": "pytorch_model-00001-of-00002.bin",
|
38 |
+
"layers.10.stu.flash_fft.twiddle_factors_fft_16_1K": "pytorch_model-00001-of-00002.bin",
|
39 |
+
"layers.10.stu.flash_fft.twiddle_factors_fft_32_32": "pytorch_model-00001-of-00002.bin",
|
40 |
+
"layers.10.stu.flash_fft.twiddle_factors_ifft_16_1K": "pytorch_model-00001-of-00002.bin",
|
41 |
+
"layers.10.stu.flash_fft.twiddle_factors_ifft_32_32": "pytorch_model-00001-of-00002.bin",
|
42 |
+
"layers.10.stu_norm.weight": "pytorch_model-00001-of-00002.bin",
|
43 |
+
"layers.11.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
44 |
+
"layers.11.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
45 |
+
"layers.11.attn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
46 |
+
"layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
47 |
+
"layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
48 |
+
"layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
49 |
+
"layers.11.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
50 |
+
"layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
51 |
+
"layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
52 |
+
"layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
53 |
+
"layers.12.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
54 |
+
"layers.12.stu.M_filters": "pytorch_model-00001-of-00002.bin",
|
55 |
+
"layers.12.stu.M_inputs": "pytorch_model-00001-of-00002.bin",
|
56 |
+
"layers.12.stu.flash_fft.f_16_fft": "pytorch_model-00001-of-00002.bin",
|
57 |
+
"layers.12.stu.flash_fft.f_16_ifft": "pytorch_model-00001-of-00002.bin",
|
58 |
+
"layers.12.stu.flash_fft.f_32_fft": "pytorch_model-00001-of-00002.bin",
|
59 |
+
"layers.12.stu.flash_fft.f_32_ifft": "pytorch_model-00001-of-00002.bin",
|
60 |
+
"layers.12.stu.flash_fft.twiddle_factors_fft_16_1K": "pytorch_model-00001-of-00002.bin",
|
61 |
+
"layers.12.stu.flash_fft.twiddle_factors_fft_32_32": "pytorch_model-00001-of-00002.bin",
|
62 |
+
"layers.12.stu.flash_fft.twiddle_factors_ifft_16_1K": "pytorch_model-00001-of-00002.bin",
|
63 |
+
"layers.12.stu.flash_fft.twiddle_factors_ifft_32_32": "pytorch_model-00001-of-00002.bin",
|
64 |
+
"layers.12.stu_norm.weight": "pytorch_model-00001-of-00002.bin",
|
65 |
+
"layers.13.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
66 |
+
"layers.13.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
67 |
+
"layers.13.attn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
68 |
+
"layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
69 |
+
"layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
70 |
+
"layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
71 |
+
"layers.13.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
72 |
+
"layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
73 |
+
"layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
74 |
+
"layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
75 |
+
"layers.14.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
76 |
+
"layers.14.stu.M_filters": "pytorch_model-00001-of-00002.bin",
|
77 |
+
"layers.14.stu.M_inputs": "pytorch_model-00001-of-00002.bin",
|
78 |
+
"layers.14.stu.flash_fft.f_16_fft": "pytorch_model-00001-of-00002.bin",
|
79 |
+
"layers.14.stu.flash_fft.f_16_ifft": "pytorch_model-00001-of-00002.bin",
|
80 |
+
"layers.14.stu.flash_fft.f_32_fft": "pytorch_model-00001-of-00002.bin",
|
81 |
+
"layers.14.stu.flash_fft.f_32_ifft": "pytorch_model-00001-of-00002.bin",
|
82 |
+
"layers.14.stu.flash_fft.twiddle_factors_fft_16_1K": "pytorch_model-00001-of-00002.bin",
|
83 |
+
"layers.14.stu.flash_fft.twiddle_factors_fft_32_32": "pytorch_model-00001-of-00002.bin",
|
84 |
+
"layers.14.stu.flash_fft.twiddle_factors_ifft_16_1K": "pytorch_model-00001-of-00002.bin",
|
85 |
+
"layers.14.stu.flash_fft.twiddle_factors_ifft_32_32": "pytorch_model-00001-of-00002.bin",
|
86 |
+
"layers.14.stu_norm.weight": "pytorch_model-00001-of-00002.bin",
|
87 |
+
"layers.15.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
88 |
+
"layers.15.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
89 |
+
"layers.15.attn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
90 |
+
"layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
91 |
+
"layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
92 |
+
"layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
93 |
+
"layers.15.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
94 |
+
"layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
95 |
+
"layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
96 |
+
"layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
97 |
+
"layers.16.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
98 |
+
"layers.16.stu.M_filters": "pytorch_model-00001-of-00002.bin",
|
99 |
+
"layers.16.stu.M_inputs": "pytorch_model-00001-of-00002.bin",
|
100 |
+
"layers.16.stu.flash_fft.f_16_fft": "pytorch_model-00001-of-00002.bin",
|
101 |
+
"layers.16.stu.flash_fft.f_16_ifft": "pytorch_model-00001-of-00002.bin",
|
102 |
+
"layers.16.stu.flash_fft.f_32_fft": "pytorch_model-00001-of-00002.bin",
|
103 |
+
"layers.16.stu.flash_fft.f_32_ifft": "pytorch_model-00001-of-00002.bin",
|
104 |
+
"layers.16.stu.flash_fft.twiddle_factors_fft_16_1K": "pytorch_model-00001-of-00002.bin",
|
105 |
+
"layers.16.stu.flash_fft.twiddle_factors_fft_32_32": "pytorch_model-00001-of-00002.bin",
|
106 |
+
"layers.16.stu.flash_fft.twiddle_factors_ifft_16_1K": "pytorch_model-00001-of-00002.bin",
|
107 |
+
"layers.16.stu.flash_fft.twiddle_factors_ifft_32_32": "pytorch_model-00001-of-00002.bin",
|
108 |
+
"layers.16.stu_norm.weight": "pytorch_model-00001-of-00002.bin",
|
109 |
+
"layers.17.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
110 |
+
"layers.17.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
111 |
+
"layers.17.attn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
112 |
+
"layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
113 |
+
"layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
114 |
+
"layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
115 |
+
"layers.17.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
116 |
+
"layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
117 |
+
"layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
118 |
+
"layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
119 |
+
"layers.18.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
120 |
+
"layers.18.stu.M_filters": "pytorch_model-00001-of-00002.bin",
|
121 |
+
"layers.18.stu.M_inputs": "pytorch_model-00001-of-00002.bin",
|
122 |
+
"layers.18.stu.flash_fft.f_16_fft": "pytorch_model-00001-of-00002.bin",
|
123 |
+
"layers.18.stu.flash_fft.f_16_ifft": "pytorch_model-00001-of-00002.bin",
|
124 |
+
"layers.18.stu.flash_fft.f_32_fft": "pytorch_model-00001-of-00002.bin",
|
125 |
+
"layers.18.stu.flash_fft.f_32_ifft": "pytorch_model-00001-of-00002.bin",
|
126 |
+
"layers.18.stu.flash_fft.twiddle_factors_fft_16_1K": "pytorch_model-00001-of-00002.bin",
|
127 |
+
"layers.18.stu.flash_fft.twiddle_factors_fft_32_32": "pytorch_model-00001-of-00002.bin",
|
128 |
+
"layers.18.stu.flash_fft.twiddle_factors_ifft_16_1K": "pytorch_model-00001-of-00002.bin",
|
129 |
+
"layers.18.stu.flash_fft.twiddle_factors_ifft_32_32": "pytorch_model-00001-of-00002.bin",
|
130 |
+
"layers.18.stu_norm.weight": "pytorch_model-00001-of-00002.bin",
|
131 |
+
"layers.19.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
132 |
+
"layers.19.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
133 |
+
"layers.19.attn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
134 |
+
"layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
135 |
+
"layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
136 |
+
"layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
137 |
+
"layers.19.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
138 |
+
"layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
139 |
+
"layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
140 |
+
"layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
141 |
+
"layers.2.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
142 |
+
"layers.2.stu.M_filters": "pytorch_model-00001-of-00002.bin",
|
143 |
+
"layers.2.stu.M_inputs": "pytorch_model-00001-of-00002.bin",
|
144 |
+
"layers.2.stu.flash_fft.f_16_fft": "pytorch_model-00001-of-00002.bin",
|
145 |
+
"layers.2.stu.flash_fft.f_16_ifft": "pytorch_model-00001-of-00002.bin",
|
146 |
+
"layers.2.stu.flash_fft.f_32_fft": "pytorch_model-00001-of-00002.bin",
|
147 |
+
"layers.2.stu.flash_fft.f_32_ifft": "pytorch_model-00001-of-00002.bin",
|
148 |
+
"layers.2.stu.flash_fft.twiddle_factors_fft_16_1K": "pytorch_model-00001-of-00002.bin",
|
149 |
+
"layers.2.stu.flash_fft.twiddle_factors_fft_32_32": "pytorch_model-00001-of-00002.bin",
|
150 |
+
"layers.2.stu.flash_fft.twiddle_factors_ifft_16_1K": "pytorch_model-00001-of-00002.bin",
|
151 |
+
"layers.2.stu.flash_fft.twiddle_factors_ifft_32_32": "pytorch_model-00001-of-00002.bin",
|
152 |
+
"layers.2.stu_norm.weight": "pytorch_model-00001-of-00002.bin",
|
153 |
+
"layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
154 |
+
"layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
155 |
+
"layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
156 |
+
"layers.20.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
157 |
+
"layers.20.stu.M_filters": "pytorch_model-00001-of-00002.bin",
|
158 |
+
"layers.20.stu.M_inputs": "pytorch_model-00001-of-00002.bin",
|
159 |
+
"layers.20.stu.flash_fft.f_16_fft": "pytorch_model-00001-of-00002.bin",
|
160 |
+
"layers.20.stu.flash_fft.f_16_ifft": "pytorch_model-00001-of-00002.bin",
|
161 |
+
"layers.20.stu.flash_fft.f_32_fft": "pytorch_model-00001-of-00002.bin",
|
162 |
+
"layers.20.stu.flash_fft.f_32_ifft": "pytorch_model-00001-of-00002.bin",
|
163 |
+
"layers.20.stu.flash_fft.twiddle_factors_fft_16_1K": "pytorch_model-00001-of-00002.bin",
|
164 |
+
"layers.20.stu.flash_fft.twiddle_factors_fft_32_32": "pytorch_model-00001-of-00002.bin",
|
165 |
+
"layers.20.stu.flash_fft.twiddle_factors_ifft_16_1K": "pytorch_model-00001-of-00002.bin",
|
166 |
+
"layers.20.stu.flash_fft.twiddle_factors_ifft_32_32": "pytorch_model-00001-of-00002.bin",
|
167 |
+
"layers.20.stu_norm.weight": "pytorch_model-00001-of-00002.bin",
|
168 |
+
"layers.21.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
169 |
+
"layers.21.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
170 |
+
"layers.21.attn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
171 |
+
"layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
172 |
+
"layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
173 |
+
"layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
174 |
+
"layers.21.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
175 |
+
"layers.22.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
176 |
+
"layers.22.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
177 |
+
"layers.22.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
178 |
+
"layers.22.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
179 |
+
"layers.22.stu.M_filters": "pytorch_model-00001-of-00002.bin",
|
180 |
+
"layers.22.stu.M_inputs": "pytorch_model-00001-of-00002.bin",
|
181 |
+
"layers.22.stu.flash_fft.f_16_fft": "pytorch_model-00001-of-00002.bin",
|
182 |
+
"layers.22.stu.flash_fft.f_16_ifft": "pytorch_model-00001-of-00002.bin",
|
183 |
+
"layers.22.stu.flash_fft.f_32_fft": "pytorch_model-00001-of-00002.bin",
|
184 |
+
"layers.22.stu.flash_fft.f_32_ifft": "pytorch_model-00001-of-00002.bin",
|
185 |
+
"layers.22.stu.flash_fft.twiddle_factors_fft_16_1K": "pytorch_model-00001-of-00002.bin",
|
186 |
+
"layers.22.stu.flash_fft.twiddle_factors_fft_32_32": "pytorch_model-00001-of-00002.bin",
|
187 |
+
"layers.22.stu.flash_fft.twiddle_factors_ifft_16_1K": "pytorch_model-00001-of-00002.bin",
|
188 |
+
"layers.22.stu.flash_fft.twiddle_factors_ifft_32_32": "pytorch_model-00001-of-00002.bin",
|
189 |
+
"layers.22.stu_norm.weight": "pytorch_model-00001-of-00002.bin",
|
190 |
+
"layers.23.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
191 |
+
"layers.23.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
192 |
+
"layers.23.attn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
193 |
+
"layers.23.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
194 |
+
"layers.23.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
195 |
+
"layers.23.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
196 |
+
"layers.23.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
197 |
+
"layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
198 |
+
"layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
199 |
+
"layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
200 |
+
"layers.24.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
201 |
+
"layers.24.stu.M_filters": "pytorch_model-00001-of-00002.bin",
|
202 |
+
"layers.24.stu.M_inputs": "pytorch_model-00001-of-00002.bin",
|
203 |
+
"layers.24.stu.flash_fft.f_16_fft": "pytorch_model-00001-of-00002.bin",
|
204 |
+
"layers.24.stu.flash_fft.f_16_ifft": "pytorch_model-00001-of-00002.bin",
|
205 |
+
"layers.24.stu.flash_fft.f_32_fft": "pytorch_model-00001-of-00002.bin",
|
206 |
+
"layers.24.stu.flash_fft.f_32_ifft": "pytorch_model-00001-of-00002.bin",
|
207 |
+
"layers.24.stu.flash_fft.twiddle_factors_fft_16_1K": "pytorch_model-00001-of-00002.bin",
|
208 |
+
"layers.24.stu.flash_fft.twiddle_factors_fft_32_32": "pytorch_model-00001-of-00002.bin",
|
209 |
+
"layers.24.stu.flash_fft.twiddle_factors_ifft_16_1K": "pytorch_model-00001-of-00002.bin",
|
210 |
+
"layers.24.stu.flash_fft.twiddle_factors_ifft_32_32": "pytorch_model-00001-of-00002.bin",
|
211 |
+
"layers.24.stu_norm.weight": "pytorch_model-00001-of-00002.bin",
|
212 |
+
"layers.25.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
|
213 |
+
"layers.25.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
|
214 |
+
"layers.25.attn_norm.weight": "pytorch_model-00002-of-00002.bin",
|
215 |
+
"layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
216 |
+
"layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
217 |
+
"layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
218 |
+
"layers.25.mlp_norm.weight": "pytorch_model-00002-of-00002.bin",
|
219 |
+
"layers.3.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
220 |
+
"layers.3.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
221 |
+
"layers.3.attn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
222 |
+
"layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
223 |
+
"layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
224 |
+
"layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
225 |
+
"layers.3.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
226 |
+
"layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
227 |
+
"layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
228 |
+
"layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
229 |
+
"layers.4.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
230 |
+
"layers.4.stu.M_filters": "pytorch_model-00001-of-00002.bin",
|
231 |
+
"layers.4.stu.M_inputs": "pytorch_model-00001-of-00002.bin",
|
232 |
+
"layers.4.stu.flash_fft.f_16_fft": "pytorch_model-00001-of-00002.bin",
|
233 |
+
"layers.4.stu.flash_fft.f_16_ifft": "pytorch_model-00001-of-00002.bin",
|
234 |
+
"layers.4.stu.flash_fft.f_32_fft": "pytorch_model-00001-of-00002.bin",
|
235 |
+
"layers.4.stu.flash_fft.f_32_ifft": "pytorch_model-00001-of-00002.bin",
|
236 |
+
"layers.4.stu.flash_fft.twiddle_factors_fft_16_1K": "pytorch_model-00001-of-00002.bin",
|
237 |
+
"layers.4.stu.flash_fft.twiddle_factors_fft_32_32": "pytorch_model-00001-of-00002.bin",
|
238 |
+
"layers.4.stu.flash_fft.twiddle_factors_ifft_16_1K": "pytorch_model-00001-of-00002.bin",
|
239 |
+
"layers.4.stu.flash_fft.twiddle_factors_ifft_32_32": "pytorch_model-00001-of-00002.bin",
|
240 |
+
"layers.4.stu_norm.weight": "pytorch_model-00001-of-00002.bin",
|
241 |
+
"layers.5.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
242 |
+
"layers.5.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
243 |
+
"layers.5.attn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
244 |
+
"layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
245 |
+
"layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
246 |
+
"layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
247 |
+
"layers.5.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
248 |
+
"layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
249 |
+
"layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
250 |
+
"layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
251 |
+
"layers.6.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
252 |
+
"layers.6.stu.M_filters": "pytorch_model-00001-of-00002.bin",
|
253 |
+
"layers.6.stu.M_inputs": "pytorch_model-00001-of-00002.bin",
|
254 |
+
"layers.6.stu.flash_fft.f_16_fft": "pytorch_model-00001-of-00002.bin",
|
255 |
+
"layers.6.stu.flash_fft.f_16_ifft": "pytorch_model-00001-of-00002.bin",
|
256 |
+
"layers.6.stu.flash_fft.f_32_fft": "pytorch_model-00001-of-00002.bin",
|
257 |
+
"layers.6.stu.flash_fft.f_32_ifft": "pytorch_model-00001-of-00002.bin",
|
258 |
+
"layers.6.stu.flash_fft.twiddle_factors_fft_16_1K": "pytorch_model-00001-of-00002.bin",
|
259 |
+
"layers.6.stu.flash_fft.twiddle_factors_fft_32_32": "pytorch_model-00001-of-00002.bin",
|
260 |
+
"layers.6.stu.flash_fft.twiddle_factors_ifft_16_1K": "pytorch_model-00001-of-00002.bin",
|
261 |
+
"layers.6.stu.flash_fft.twiddle_factors_ifft_32_32": "pytorch_model-00001-of-00002.bin",
|
262 |
+
"layers.6.stu_norm.weight": "pytorch_model-00001-of-00002.bin",
|
263 |
+
"layers.7.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
264 |
+
"layers.7.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
265 |
+
"layers.7.attn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
266 |
+
"layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
267 |
+
"layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
268 |
+
"layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
269 |
+
"layers.7.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
270 |
+
"layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
271 |
+
"layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
272 |
+
"layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
273 |
+
"layers.8.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
274 |
+
"layers.8.stu.M_filters": "pytorch_model-00001-of-00002.bin",
|
275 |
+
"layers.8.stu.M_inputs": "pytorch_model-00001-of-00002.bin",
|
276 |
+
"layers.8.stu.flash_fft.f_16_fft": "pytorch_model-00001-of-00002.bin",
|
277 |
+
"layers.8.stu.flash_fft.f_16_ifft": "pytorch_model-00001-of-00002.bin",
|
278 |
+
"layers.8.stu.flash_fft.f_32_fft": "pytorch_model-00001-of-00002.bin",
|
279 |
+
"layers.8.stu.flash_fft.f_32_ifft": "pytorch_model-00001-of-00002.bin",
|
280 |
+
"layers.8.stu.flash_fft.twiddle_factors_fft_16_1K": "pytorch_model-00001-of-00002.bin",
|
281 |
+
"layers.8.stu.flash_fft.twiddle_factors_fft_32_32": "pytorch_model-00001-of-00002.bin",
|
282 |
+
"layers.8.stu.flash_fft.twiddle_factors_ifft_16_1K": "pytorch_model-00001-of-00002.bin",
|
283 |
+
"layers.8.stu.flash_fft.twiddle_factors_ifft_32_32": "pytorch_model-00001-of-00002.bin",
|
284 |
+
"layers.8.stu_norm.weight": "pytorch_model-00001-of-00002.bin",
|
285 |
+
"layers.9.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
|
286 |
+
"layers.9.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
|
287 |
+
"layers.9.attn_norm.weight": "pytorch_model-00001-of-00002.bin",
|
288 |
+
"layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
289 |
+
"layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
290 |
+
"layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
291 |
+
"layers.9.mlp_norm.weight": "pytorch_model-00001-of-00002.bin",
|
292 |
+
"lm_head.weight": "pytorch_model-00001-of-00002.bin",
|
293 |
+
"norm.weight": "pytorch_model-00002-of-00002.bin",
|
294 |
+
"tok_emb.weight": "pytorch_model-00001-of-00002.bin"
|
295 |
+
}
|
296 |
+
}
|