olinguito / README.md
wilmerhenao's picture
Update README.md
57fe380

This is a Finetuning of GPT-J-6B using LoRa - https://huggingface.co/EleutherAI/gpt-j-6B

The dataset is the cleaned version of the Alpaca dataset - https://github.com/gururise/AlpacaDataCleaned

A model similar to this has been talked about

The performance is good but not as good as the orginal Alpaca trained from a base model of LLaMa

This is mostly due to the LLaMa 7B model being pretrained on 1T tokens and GPT-J-6B being trained on 300-400M tokens

You will need a 3090 or A100 to run it, unfortunately this current version won't work on a T4.


library_name: peft license: apache-2.0 language: - en tags: - Text Generation

Training procedure

The following bitsandbytes quantization config was used during training:

  • load_in_8bit: True
  • load_in_4bit: False
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: fp4
  • bnb_4bit_use_double_quant: False
  • bnb_4bit_compute_dtype: float32

The following bitsandbytes quantization config was used during training:

  • load_in_8bit: True
  • load_in_4bit: False
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: fp4
  • bnb_4bit_use_double_quant: False
  • bnb_4bit_compute_dtype: float32

The following bitsandbytes quantization config was used during training:

  • load_in_8bit: True
  • load_in_4bit: False
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: fp4
  • bnb_4bit_use_double_quant: False
  • bnb_4bit_compute_dtype: float32

Framework versions

  • PEFT 0.4.0.dev0

  • PEFT 0.4.0.dev0

  • PEFT 0.4.0.dev0