model documentation
#2
by
nazneen
- opened
README.md
CHANGED
@@ -11,17 +11,417 @@ datasets:
|
|
11 |
- universal_dependencies
|
12 |
metrics:
|
13 |
- accuracy
|
14 |
-
|
15 |
model-index:
|
16 |
- name: xlm-roberta-base-ft-udpos28-tr
|
17 |
results:
|
18 |
-
- task:
|
19 |
type: token-classification
|
20 |
name: Part-of-Speech Tagging
|
21 |
dataset:
|
22 |
-
type: universal_dependencies
|
23 |
name: Universal Dependencies v2.8
|
|
|
24 |
metrics:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
- type: accuracy
|
26 |
name: English Test accuracy
|
27 |
value: 74.4
|
@@ -313,14 +713,12 @@ model-index:
|
|
313 |
- type: accuracy
|
314 |
name: Belarusian Test accuracy
|
315 |
value: 76.9
|
316 |
-
-
|
317 |
-
name: Serbian Test accuracy
|
318 |
value: 72.2
|
319 |
-
|
320 |
-
|
321 |
value: 50.0
|
322 |
-
-
|
323 |
-
name: Western Armenian Test accuracy
|
324 |
value: 70.5
|
325 |
- type: accuracy
|
326 |
name: Scottish Gaelic Test accuracy
|
@@ -337,20 +735,82 @@ model-index:
|
|
337 |
- type: accuracy
|
338 |
name: Chukchi Test accuracy
|
339 |
value: 40.8
|
340 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
|
342 |
-
# XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Turkish
|
343 |
-
|
344 |
-
This model is part of our paper called:
|
345 |
-
|
346 |
-
- Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages
|
347 |
-
|
348 |
-
Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details.
|
349 |
-
|
350 |
-
## Usage
|
351 |
```python
|
352 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
353 |
|
354 |
tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-tr")
|
|
|
355 |
model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-tr")
|
|
|
356 |
```
|
|
|
|
|
|
|
|
|
|
11 |
- universal_dependencies
|
12 |
metrics:
|
13 |
- accuracy
|
|
|
14 |
model-index:
|
15 |
- name: xlm-roberta-base-ft-udpos28-tr
|
16 |
results:
|
17 |
+
- task:
|
18 |
type: token-classification
|
19 |
name: Part-of-Speech Tagging
|
20 |
dataset:
|
|
|
21 |
name: Universal Dependencies v2.8
|
22 |
+
type: universal_dependencies
|
23 |
metrics:
|
24 |
+
- type: accuracy
|
25 |
+
value: 74.4
|
26 |
+
name: English Test accuracy
|
27 |
+
- type: accuracy
|
28 |
+
value: 73.7
|
29 |
+
name: Dutch Test accuracy
|
30 |
+
- type: accuracy
|
31 |
+
value: 73.5
|
32 |
+
name: German Test accuracy
|
33 |
+
- type: accuracy
|
34 |
+
value: 73.2
|
35 |
+
name: Italian Test accuracy
|
36 |
+
- type: accuracy
|
37 |
+
value: 71.4
|
38 |
+
name: French Test accuracy
|
39 |
+
- type: accuracy
|
40 |
+
value: 71.1
|
41 |
+
name: Spanish Test accuracy
|
42 |
+
- type: accuracy
|
43 |
+
value: 77.9
|
44 |
+
name: Russian Test accuracy
|
45 |
+
- type: accuracy
|
46 |
+
value: 74.5
|
47 |
+
name: Swedish Test accuracy
|
48 |
+
- type: accuracy
|
49 |
+
value: 69.2
|
50 |
+
name: Norwegian Test accuracy
|
51 |
+
- type: accuracy
|
52 |
+
value: 73.8
|
53 |
+
name: Danish Test accuracy
|
54 |
+
- type: accuracy
|
55 |
+
value: 45.8
|
56 |
+
name: Low Saxon Test accuracy
|
57 |
+
- type: accuracy
|
58 |
+
value: 39.8
|
59 |
+
name: Akkadian Test accuracy
|
60 |
+
- type: accuracy
|
61 |
+
value: 80.9
|
62 |
+
name: Armenian Test accuracy
|
63 |
+
- type: accuracy
|
64 |
+
value: 62.9
|
65 |
+
name: Welsh Test accuracy
|
66 |
+
- type: accuracy
|
67 |
+
value: 63.7
|
68 |
+
name: Old East Slavic Test accuracy
|
69 |
+
- type: accuracy
|
70 |
+
value: 71.5
|
71 |
+
name: Albanian Test accuracy
|
72 |
+
- type: accuracy
|
73 |
+
value: 62.3
|
74 |
+
name: Slovenian Test accuracy
|
75 |
+
- type: accuracy
|
76 |
+
value: 41.3
|
77 |
+
name: Guajajara Test accuracy
|
78 |
+
- type: accuracy
|
79 |
+
value: 68.0
|
80 |
+
name: Kurmanji Test accuracy
|
81 |
+
- type: accuracy
|
82 |
+
value: 88.4
|
83 |
+
name: Turkish Test accuracy
|
84 |
+
- type: accuracy
|
85 |
+
value: 81.1
|
86 |
+
name: Finnish Test accuracy
|
87 |
+
- type: accuracy
|
88 |
+
value: 71.5
|
89 |
+
name: Indonesian Test accuracy
|
90 |
+
- type: accuracy
|
91 |
+
value: 76.8
|
92 |
+
name: Ukrainian Test accuracy
|
93 |
+
- type: accuracy
|
94 |
+
value: 74.3
|
95 |
+
name: Polish Test accuracy
|
96 |
+
- type: accuracy
|
97 |
+
value: 76.7
|
98 |
+
name: Portuguese Test accuracy
|
99 |
+
- type: accuracy
|
100 |
+
value: 81.1
|
101 |
+
name: Kazakh Test accuracy
|
102 |
+
- type: accuracy
|
103 |
+
value: 68.2
|
104 |
+
name: Latin Test accuracy
|
105 |
+
- type: accuracy
|
106 |
+
value: 47.5
|
107 |
+
name: Old French Test accuracy
|
108 |
+
- type: accuracy
|
109 |
+
value: 62.6
|
110 |
+
name: Buryat Test accuracy
|
111 |
+
- type: accuracy
|
112 |
+
value: 24.6
|
113 |
+
name: Kaapor Test accuracy
|
114 |
+
- type: accuracy
|
115 |
+
value: 63.7
|
116 |
+
name: Korean Test accuracy
|
117 |
+
- type: accuracy
|
118 |
+
value: 82.0
|
119 |
+
name: Estonian Test accuracy
|
120 |
+
- type: accuracy
|
121 |
+
value: 72.3
|
122 |
+
name: Croatian Test accuracy
|
123 |
+
- type: accuracy
|
124 |
+
value: 24.1
|
125 |
+
name: Gothic Test accuracy
|
126 |
+
- type: accuracy
|
127 |
+
value: 41.1
|
128 |
+
name: Swiss German Test accuracy
|
129 |
+
- type: accuracy
|
130 |
+
value: 23.0
|
131 |
+
name: Assyrian Test accuracy
|
132 |
+
- type: accuracy
|
133 |
+
value: 45.2
|
134 |
+
name: North Sami Test accuracy
|
135 |
+
- type: accuracy
|
136 |
+
value: 36.0
|
137 |
+
name: Naija Test accuracy
|
138 |
+
- type: accuracy
|
139 |
+
value: 80.0
|
140 |
+
name: Latvian Test accuracy
|
141 |
+
- type: accuracy
|
142 |
+
value: 55.9
|
143 |
+
name: Chinese Test accuracy
|
144 |
+
- type: accuracy
|
145 |
+
value: 56.2
|
146 |
+
name: Tagalog Test accuracy
|
147 |
+
- type: accuracy
|
148 |
+
value: 30.0
|
149 |
+
name: Bambara Test accuracy
|
150 |
+
- type: accuracy
|
151 |
+
value: 81.2
|
152 |
+
name: Lithuanian Test accuracy
|
153 |
+
- type: accuracy
|
154 |
+
value: 72.4
|
155 |
+
name: Galician Test accuracy
|
156 |
+
- type: accuracy
|
157 |
+
value: 57.0
|
158 |
+
name: Vietnamese Test accuracy
|
159 |
+
- type: accuracy
|
160 |
+
value: 80.2
|
161 |
+
name: Greek Test accuracy
|
162 |
+
- type: accuracy
|
163 |
+
value: 69.1
|
164 |
+
name: Catalan Test accuracy
|
165 |
+
- type: accuracy
|
166 |
+
value: 75.8
|
167 |
+
name: Czech Test accuracy
|
168 |
+
- type: accuracy
|
169 |
+
value: 52.7
|
170 |
+
name: Erzya Test accuracy
|
171 |
+
- type: accuracy
|
172 |
+
value: 50.8
|
173 |
+
name: Bhojpuri Test accuracy
|
174 |
+
- type: accuracy
|
175 |
+
value: 49.0
|
176 |
+
name: Thai Test accuracy
|
177 |
+
- type: accuracy
|
178 |
+
value: 77.9
|
179 |
+
name: Marathi Test accuracy
|
180 |
+
- type: accuracy
|
181 |
+
value: 66.8
|
182 |
+
name: Basque Test accuracy
|
183 |
+
- type: accuracy
|
184 |
+
value: 75.1
|
185 |
+
name: Slovak Test accuracy
|
186 |
+
- type: accuracy
|
187 |
+
value: 43.1
|
188 |
+
name: Kiche Test accuracy
|
189 |
+
- type: accuracy
|
190 |
+
value: 31.7
|
191 |
+
name: Yoruba Test accuracy
|
192 |
+
- type: accuracy
|
193 |
+
value: 48.6
|
194 |
+
name: Warlpiri Test accuracy
|
195 |
+
- type: accuracy
|
196 |
+
value: 79.5
|
197 |
+
name: Tamil Test accuracy
|
198 |
+
- type: accuracy
|
199 |
+
value: 34.1
|
200 |
+
name: Maltese Test accuracy
|
201 |
+
- type: accuracy
|
202 |
+
value: 58.5
|
203 |
+
name: Ancient Greek Test accuracy
|
204 |
+
- type: accuracy
|
205 |
+
value: 68.9
|
206 |
+
name: Icelandic Test accuracy
|
207 |
+
- type: accuracy
|
208 |
+
value: 33.6
|
209 |
+
name: Mbya Guarani Test accuracy
|
210 |
+
- type: accuracy
|
211 |
+
value: 60.5
|
212 |
+
name: Urdu Test accuracy
|
213 |
+
- type: accuracy
|
214 |
+
value: 69.6
|
215 |
+
name: Romanian Test accuracy
|
216 |
+
- type: accuracy
|
217 |
+
value: 71.3
|
218 |
+
name: Persian Test accuracy
|
219 |
+
- type: accuracy
|
220 |
+
value: 50.2
|
221 |
+
name: Apurina Test accuracy
|
222 |
+
- type: accuracy
|
223 |
+
value: 44.4
|
224 |
+
name: Japanese Test accuracy
|
225 |
+
- type: accuracy
|
226 |
+
value: 86.4
|
227 |
+
name: Hungarian Test accuracy
|
228 |
+
- type: accuracy
|
229 |
+
value: 63.2
|
230 |
+
name: Hindi Test accuracy
|
231 |
+
- type: accuracy
|
232 |
+
value: 36.3
|
233 |
+
name: Classical Chinese Test accuracy
|
234 |
+
- type: accuracy
|
235 |
+
value: 51.0
|
236 |
+
name: Komi Permyak Test accuracy
|
237 |
+
- type: accuracy
|
238 |
+
value: 59.5
|
239 |
+
name: Faroese Test accuracy
|
240 |
+
- type: accuracy
|
241 |
+
value: 38.3
|
242 |
+
name: Sanskrit Test accuracy
|
243 |
+
- type: accuracy
|
244 |
+
value: 65.4
|
245 |
+
name: Livvi Test accuracy
|
246 |
+
- type: accuracy
|
247 |
+
value: 64.4
|
248 |
+
name: Arabic Test accuracy
|
249 |
+
- type: accuracy
|
250 |
+
value: 38.9
|
251 |
+
name: Wolof Test accuracy
|
252 |
+
- type: accuracy
|
253 |
+
value: 72.4
|
254 |
+
name: Bulgarian Test accuracy
|
255 |
+
- type: accuracy
|
256 |
+
value: 49.1
|
257 |
+
name: Akuntsu Test accuracy
|
258 |
+
- type: accuracy
|
259 |
+
value: 23.3
|
260 |
+
name: Makurap Test accuracy
|
261 |
+
- type: accuracy
|
262 |
+
value: 46.5
|
263 |
+
name: Kangri Test accuracy
|
264 |
+
- type: accuracy
|
265 |
+
value: 55.4
|
266 |
+
name: Breton Test accuracy
|
267 |
+
- type: accuracy
|
268 |
+
value: 80.7
|
269 |
+
name: Telugu Test accuracy
|
270 |
+
- type: accuracy
|
271 |
+
value: 54.3
|
272 |
+
name: Cantonese Test accuracy
|
273 |
+
- type: accuracy
|
274 |
+
value: 42.9
|
275 |
+
name: Old Church Slavonic Test accuracy
|
276 |
+
- type: accuracy
|
277 |
+
value: 70.5
|
278 |
+
name: Karelian Test accuracy
|
279 |
+
- type: accuracy
|
280 |
+
value: 67.1
|
281 |
+
name: Upper Sorbian Test accuracy
|
282 |
+
- type: accuracy
|
283 |
+
value: 58.3
|
284 |
+
name: South Levantine Arabic Test accuracy
|
285 |
+
- type: accuracy
|
286 |
+
value: 47.6
|
287 |
+
name: Komi Zyrian Test accuracy
|
288 |
+
- type: accuracy
|
289 |
+
value: 60.3
|
290 |
+
name: Irish Test accuracy
|
291 |
+
- type: accuracy
|
292 |
+
value: 50.0
|
293 |
+
name: Nayini Test accuracy
|
294 |
+
- type: accuracy
|
295 |
+
value: 41.9
|
296 |
+
name: Munduruku Test accuracy
|
297 |
+
- type: accuracy
|
298 |
+
value: 37.5
|
299 |
+
name: Manx Test accuracy
|
300 |
+
- type: accuracy
|
301 |
+
value: 47.4
|
302 |
+
name: Skolt Sami Test accuracy
|
303 |
+
- type: accuracy
|
304 |
+
value: 71.3
|
305 |
+
name: Afrikaans Test accuracy
|
306 |
+
- type: accuracy
|
307 |
+
value: 53.4
|
308 |
+
name: Old Turkish Test accuracy
|
309 |
+
- type: accuracy
|
310 |
+
value: 53.6
|
311 |
+
name: Tupinamba Test accuracy
|
312 |
+
- type: accuracy
|
313 |
+
value: 76.9
|
314 |
+
name: Belarusian Test accuracy
|
315 |
+
- type: accuracy
|
316 |
+
value: 72.2
|
317 |
+
name: Serbian Test accuracy
|
318 |
+
- type: accuracy
|
319 |
+
value: 50.0
|
320 |
+
name: Moksha Test accuracy
|
321 |
+
- type: accuracy
|
322 |
+
value: 70.5
|
323 |
+
name: Western Armenian Test accuracy
|
324 |
+
- type: accuracy
|
325 |
+
value: 54.1
|
326 |
+
name: Scottish Gaelic Test accuracy
|
327 |
+
- type: accuracy
|
328 |
+
value: 50.0
|
329 |
+
name: Khunsari Test accuracy
|
330 |
+
- type: accuracy
|
331 |
+
value: 79.2
|
332 |
+
name: Hebrew Test accuracy
|
333 |
+
- type: accuracy
|
334 |
+
value: 70.8
|
335 |
+
name: Uyghur Test accuracy
|
336 |
+
- type: accuracy
|
337 |
+
value: 40.8
|
338 |
+
name: Chukchi Test accuracy
|
339 |
+
---
|
340 |
+
|
341 |
+
# Model Card for XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Turkish
|
342 |
+
|
343 |
+
|
344 |
+
|
345 |
+
# Model Details
|
346 |
+
|
347 |
+
## Model Description
|
348 |
+
|
349 |
+
- **Developed by:** Wietse de Vries
|
350 |
+
- **Shared by [Optional]:** Hugging Face
|
351 |
+
- **Model type:** Token Classification
|
352 |
+
- **Language(s) (NLP):** tr
|
353 |
+
- **License:** apache-2.0
|
354 |
+
- **Related Models:** xlm-roberla
|
355 |
+
- **Parent Model:**
|
356 |
+
- **Resources for more information:**
|
357 |
+
- [Associated Paper](https://aclanthology.org/2022.acl-long.529.pdf)
|
358 |
+
- [Space](https://huggingface.co/spaces/wietsedv/xpo)
|
359 |
+
|
360 |
+
# Uses
|
361 |
+
|
362 |
+
|
363 |
+
## Direct Use
|
364 |
+
|
365 |
+
Token Classification
|
366 |
+
|
367 |
+
## Downstream Use [Optional]
|
368 |
+
|
369 |
+
More information needed.
|
370 |
+
|
371 |
+
## Out-of-Scope Use
|
372 |
+
|
373 |
+
The model should not be used to intentionally create hostile or alienating environments for people.
|
374 |
+
# Bias, Risks, and Limitations
|
375 |
+
|
376 |
+
|
377 |
+
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
|
378 |
+
|
379 |
+
|
380 |
+
## Recommendations
|
381 |
+
|
382 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations.
|
383 |
+
|
384 |
+
# Training Details
|
385 |
+
|
386 |
+
## Training Data
|
387 |
+
|
388 |
+
|
389 |
+
See the associated [ Universal Dependencies v2.8 datasetcard] (https://huggingface.co/datasets/universal_dependencies)
|
390 |
+
for further details.
|
391 |
+
|
392 |
+
## Training Procedure
|
393 |
+
|
394 |
+
|
395 |
+
|
396 |
+
### Preprocessing
|
397 |
+
|
398 |
+
More information needed.
|
399 |
+
|
400 |
+
### Speeds, Sizes, Times
|
401 |
+
|
402 |
+
More information needed.
|
403 |
+
|
404 |
+
# Evaluation
|
405 |
+
|
406 |
+
|
407 |
+
## Testing Data, Factors & Metrics
|
408 |
+
|
409 |
+
### Testing Data
|
410 |
+
|
411 |
+
See the associated [ Universal Dependencies v2.8 datasetcard](https://huggingface.co/datasets/universal_dependencies)
|
412 |
+
for further details.
|
413 |
+
|
414 |
+
### Factors
|
415 |
+
|
416 |
+
|
417 |
+
### Metrics
|
418 |
+
|
419 |
+
Accuracy
|
420 |
+
|
421 |
+
## Results
|
422 |
+
<details>
|
423 |
+
<summary> Click to expand </summary>
|
424 |
+
|
425 |
- type: accuracy
|
426 |
name: English Test accuracy
|
427 |
value: 74.4
|
|
|
713 |
- type: accuracy
|
714 |
name: Belarusian Test accuracy
|
715 |
value: 76.9
|
716 |
+
- name: Serbian Test accuracy
|
|
|
717 |
value: 72.2
|
718 |
+
|
719 |
+
- name: Moksha Test accuracy
|
720 |
value: 50.0
|
721 |
+
- name: Western Armenian Test accuracy
|
|
|
722 |
value: 70.5
|
723 |
- type: accuracy
|
724 |
name: Scottish Gaelic Test accuracy
|
|
|
735 |
- type: accuracy
|
736 |
name: Chukchi Test accuracy
|
737 |
value: 40.8
|
738 |
+
</details>
|
739 |
+
|
740 |
+
# Model Examination
|
741 |
+
|
742 |
+
More information needed
|
743 |
+
|
744 |
+
# Environmental Impact
|
745 |
+
|
746 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
747 |
+
|
748 |
+
- **Hardware Type:** More information needed
|
749 |
+
- **Hours used:** More information needed
|
750 |
+
- **Cloud Provider:** More information needed
|
751 |
+
- **Compute Region:** More information needed
|
752 |
+
- **Carbon Emitted:** More information needed
|
753 |
+
|
754 |
+
# Technical Specifications [optional]
|
755 |
+
|
756 |
+
## Model Architecture and Objective
|
757 |
+
|
758 |
+
More information needed
|
759 |
+
|
760 |
+
## Compute Infrastructure
|
761 |
+
|
762 |
+
More information needed
|
763 |
+
|
764 |
+
### Hardware
|
765 |
+
|
766 |
+
More information needed
|
767 |
+
|
768 |
+
### Software
|
769 |
+
|
770 |
+
More information needed
|
771 |
+
|
772 |
+
# Citation
|
773 |
+
|
774 |
+
|
775 |
+
**BibTeX:**
|
776 |
+
|
777 |
+
More information needed
|
778 |
+
|
779 |
+
**APA:**
|
780 |
+
|
781 |
+
More information needed
|
782 |
+
|
783 |
+
# Glossary [optional]
|
784 |
+
More information needed
|
785 |
+
|
786 |
+
# More Information [optional]
|
787 |
+
|
788 |
+
More information needed
|
789 |
+
|
790 |
+
# Model Card Authors [optional]
|
791 |
+
|
792 |
+
Wietse de Vries in collaboration with Ezi Ozoani and the Hugging Face team.
|
793 |
+
|
794 |
+
# Model Card Contact
|
795 |
+
|
796 |
+
More information needed
|
797 |
+
|
798 |
+
# How to Get Started with the Model
|
799 |
+
|
800 |
+
Use the code below to get started with the model.
|
801 |
+
|
802 |
+
<details>
|
803 |
+
<summary> Click to expand </summary>
|
804 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
805 |
```python
|
806 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
807 |
|
808 |
tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-tr")
|
809 |
+
|
810 |
model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-tr")
|
811 |
+
|
812 |
```
|
813 |
+
|
814 |
+
|
815 |
+
</details>
|
816 |
+
|