distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0851
  • Accuracy: {'accuracy': 0.883}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.5877 {'accuracy': 0.832}
0.4308 2.0 500 0.4432 {'accuracy': 0.885}
0.4308 3.0 750 0.6005 {'accuracy': 0.872}
0.1638 4.0 1000 0.6922 {'accuracy': 0.88}
0.1638 5.0 1250 0.8969 {'accuracy': 0.884}
0.0465 6.0 1500 0.9943 {'accuracy': 0.877}
0.0465 7.0 1750 1.1570 {'accuracy': 0.878}
0.0117 8.0 2000 1.1183 {'accuracy': 0.885}
0.0117 9.0 2250 1.1008 {'accuracy': 0.883}
0.0102 10.0 2500 1.0851 {'accuracy': 0.883}

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.3
  • Pytorch 2.3.1+rocm6.0
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for wickes1/distilbert-base-uncased-lora-text-classification

Adapter
(225)
this model