lwm / README.md
Sadjad Alikhani
Update README.md
be49f23 verified
|
raw
history blame
9.3 kB
# ๐Ÿ“ก **LWM: Large Wireless Model**
**[๐Ÿš€ Click here to try the Interactive Demo!](https://huggingface.co/spaces/sadjadalikhani/lwm-interactive-demo)**
Welcome to the **LWM** (Large Wireless Model) repository! This project hosts a pre-trained model designed to process and extract features from wireless communication datasets, specifically the **DeepMIMO** dataset. Follow the instructions below to set up your environment, install the required packages, clone the repository, load the data, and perform inference with LWM.
---
## ๐Ÿ›  **How to Use**
### 1. **Install Conda or Mamba (via Miniforge)**
First, you need to have a package manager like **Conda** or **Mamba** (a faster alternative) installed to manage your Python environments and packages.
#### **Option A: Install Conda**
If you prefer to use **Conda**, you can download and install **Anaconda** or **Miniconda**.
- **Anaconda** includes a full scientific package suite, but it is larger in size. Download it [here](https://www.anaconda.com/products/distribution).
- **Miniconda** is a lightweight version that only includes Conda and Python. Download it [here](https://docs.conda.io/en/latest/miniconda.html).
#### **Option B: Install Mamba (via Miniforge)**
**Mamba** is a much faster alternative to Conda. You can install **Mamba** by installing **Miniforge**.
- **Miniforge** is a smaller, community-based installer for Conda that includes **Mamba**. Download it [here](https://github.com/conda-forge/miniforge/releases/latest).
After installation, you can use conda for environment management.
---
### 2. **Create a New Environment**
Once you have Conda (https://conda.io/projects/conda/en/latest/user-guide/install/index.html), follow these steps to create a new environment and install the necessary packages.
#### **Step 1: Create a new environment**
You can create a new environment called `lwm_env`:
```bash
conda create -n lwm_env
```
#### **Step 2: Activate the environment**
Activate the environment you just created:
```bash
conda activate lwm_env
```
---
#### **Step 3: Install Required Packages**
Install the necessary packages inside your new environment.
# Install CUDA-enabled Pytorch
```bash
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
```
# Install other required packages from conda-forge
```bash
conda install python numpy pandas matplotlib tqdm -c conda-forge
```
# Install DeepMIMOv3 with pip
```bash
pip install DeepMIMOv3
```
---
### 3. **Required Functions to Clone Datasets**
The following functions will help you clone specific dataset scenarios:
```python
import subprocess
import os
# Function to clone a specific dataset scenario folder
def clone_dataset_scenario(scenario_name, repo_url, model_repo_dir="./LWM", scenarios_dir="scenarios"):
# Create the scenarios directory if it doesn't exist
scenarios_path = os.path.join(model_repo_dir, scenarios_dir)
if not os.path.exists(scenarios_path):
os.makedirs(scenarios_path)
scenario_path = os.path.join(scenarios_path, scenario_name)
# Initialize sparse checkout for the dataset repository
if not os.path.exists(os.path.join(scenarios_path, ".git")):
print(f"Initializing sparse checkout in {scenarios_path}...")
subprocess.run(["git", "clone", "--sparse", repo_url, "."], cwd=scenarios_path, check=True)
subprocess.run(["git", "sparse-checkout", "init", "--cone"], cwd=scenarios_path, check=True)
subprocess.run(["git", "lfs", "install"], cwd=scenarios_path, check=True) # Install Git LFS if needed
# Add the requested scenario folder to sparse checkout
print(f"Adding {scenario_name} to sparse checkout...")
subprocess.run(["git", "sparse-checkout", "add", scenario_name], cwd=scenarios_path, check=True)
# Pull large files if needed (using Git LFS)
subprocess.run(["git", "lfs", "pull"], cwd=scenarios_path, check=True)
print(f"Successfully cloned {scenario_name} into {scenarios_path}.")
# Function to clone multiple dataset scenarios
def clone_dataset_scenarios(selected_scenario_names, dataset_repo_url, model_repo_dir):
for scenario_name in selected_scenario_names:
clone_dataset_scenario(scenario_name, dataset_repo_url, model_repo_dir)
```
---
### 4. **Clone the Model**
Next, you need to clone the **LWM** model from its Git repository. This will download all the necessary files to your local system.
```bash
# Step 1: Clone the model repository (if not already cloned)
model_repo_url = "https://huggingface.co/sadjadalikhani/lwm"
model_repo_dir = "./LWM"
if not os.path.exists(model_repo_dir):
print(f"Cloning model repository from {model_repo_url}...")
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
```
---
### 5. **Clone the Desired Datasets**
Before proceeding with tokenization and data processing, the **DeepMIMO** datasetโ€”or any dataset generated using the operational settings outlined belowโ€”must first be loaded. The table below provides a list of available datasets and their respective links for further details:
๐Ÿ“Š **Dataset Overview**
| ๐Ÿ“Š **Dataset** | ๐Ÿ™๏ธ **City** | ๐Ÿ‘ฅ **Number of Users** | ๐Ÿ”— **DeepMIMO Page** |
|----------------|----------------------|------------------------|------------------------------------------------------------------------------------------------------------|
| Dataset 0 | ๐ŸŒ† Denver | 1354 | [DeepMIMO City Scenario 18](https://www.deepmimo.net/scenarios/deepmimo-city-scenario18/) |
| Dataset 1 | ๐Ÿ™๏ธ Indianapolis | 3248 | [DeepMIMO City Scenario 15](https://www.deepmimo.net/scenarios/deepmimo-city-scenario15/) |
| Dataset 2 | ๐ŸŒ‡ Oklahoma | 3455 | [DeepMIMO City Scenario 19](https://www.deepmimo.net/scenarios/deepmimo-city-scenario19/) |
| Dataset 3 | ๐ŸŒ† Fort Worth | 1902 | [DeepMIMO City Scenario 12](https://www.deepmimo.net/scenarios/deepmimo-city-scenario12/) |
| Dataset 4 | ๐ŸŒ‰ Santa Clara | 2689 | [DeepMIMO City Scenario 11](https://www.deepmimo.net/scenarios/deepmimo-city-scenario11/) |
| Dataset 5 | ๐ŸŒ… San Diego | 2192 | [DeepMIMO City Scenario 7](https://www.deepmimo.net/scenarios/deepmimo-city-scenario7/) |
It is important to note that these six datasets were **not** used during the pre-training of the LWM model, and the high-quality embeddings produced are a testament to LWMโ€™s robust generalization capabilities rather than overfitting.
#### **Operational Settings**:
- **Antennas at BS**: 32
- **Antennas at UEs**: 1
- **Subcarriers**: 32
- **Paths**: 20
```python
# Step 2: Clone specific dataset scenario folder(s) inside the "scenarios" folder
dataset_repo_url = "https://huggingface.co/datasets/sadjadalikhani/lwm" # Base URL for dataset repo
scenario_names = np.array(["city_18_denver",
"city_15_indianapolis",
"city_19_oklahoma",
"city_12_fortworth",
"city_11_santaclara",
"city_7_sandiego"]
)
scenario_idxs = np.array([3])
selected_scenario_names = scenario_names[scenario_idxs]
# Clone the requested scenario folders (this will clone every time)
clone_dataset_scenarios(selected_scenario_names, dataset_repo_url, model_repo_dir)
```
---
### 6. **Change the working directory to LWM folder**
```bash
if os.path.exists(model_repo_dir):
os.chdir(model_repo_dir)
print(f"Changed working directory to {os.getcwd()}")
else:
print(f"Directory {model_repo_dir} does not exist. Please check if the repository is cloned properly.")
```
---
### 7. **Tokenize and Load the Model**
```python
from input_preprocess import tokenizer
from lwm_model import lwm
import torch
preprocessed_chs = tokenizer(selected_scenario_names=selected_scenario_names,
manual_data=None,
gen_raw=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Loading the LWM model on {device}...")
model = lwm.from_pretrained(device=device)
```
---
### 8. **Perform Inference**
```python
from inference import lwm_inference, create_raw_dataset
input_types = ['cls_emb', 'channel_emb', 'raw']
selected_input_type = input_types[0]
if selected_input_type in ['cls_emb', 'channel_emb']:
dataset = lwm_inference(preprocessed_chs, selected_input_type, model, device)
else:
dataset = create_raw_dataset(preprocessed_chs, device)
```
---
### 9. **Explore the Interactive Demo**
If you'd like to explore **LWM** interactively, check out the demo hosted on Hugging Face Spaces:
[**Try the Interactive Demo!**](https://huggingface.co/spaces/sadjadalikhani/LWM-Interactive-Demo)
---
Now youโ€™re ready to dive into the world of **Large Wireless Model (LWM)**, process wireless communication datasets, and extract high-quality embeddings to fuel your research or application!