This is a replicate of https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca

But in safetensor format

Prompt Template

To use the prompt for further training and inference, please use OpenAI's Chat Markup Language (ChatML) format, with <|im_start|> and <|im_end|> tokens added to support this.

This means that, e.g., in oobabooga the "MPT-Chat" instruction template should work, as it also uses ChatML.

This formatting is also available via a pre-defined Transformers chat template, which means that lists of messages can be formatted for you with the apply_chat_template() method:

chat = [
  {"role": "system", "content": "You are MistralOrca, a large language model trained by Alignment Lab AI. Write out your reasoning step-by-step to be sure you get the right answers!"}
  {"role": "user", "content": "How are you?"},
  {"role": "assistant", "content": "I am doing well!"},
  {"role": "user", "content": "Please tell me about how mistral winds have attracted super-orcas."},
]
tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)

which will yield:

<|im_start|>system
You are MistralOrca, a large language model trained by Alignment Lab AI. Write out your reasoning step-by-step to be sure you get the right answers!
<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
I am doing well!<|im_end|>
<|im_start|>user
Please tell me about how mistral winds have attracted super-orcas.<|im_end|>
<|im_start|>assistant

If you use tokenize=True and return_tensors="pt" instead, then you will get a tokenized and formatted conversation ready to pass to model.generate().

Inference

See this notebook for inference details.

Note that you need the development snapshot of Transformers currently, as support for Mistral hasn't been released into PyPI yet:

pip install git+https://github.com/huggingface/transformers
Downloads last month
16
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.