.gitattributes CHANGED
@@ -33,4 +33,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
- *.mp4 filter=lfs diff=lfs merge=lfs -text
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
.gitignore CHANGED
@@ -1,6 +1 @@
1
- transactify_venv
2
- tokenizer.joblib
3
- label_encoder.joblib
4
- transactify.h5
5
- venv
6
- .venv
 
1
+ transactify_venv
 
 
 
 
 
About.md DELETED
@@ -1,64 +0,0 @@
1
- Abstract for Transactify......
2
-
3
- Transactify is an LSTM-based model designed to predict the category of online payment transactions from their descriptions.
4
- By analyzing textual inputs like "Live concert stream on YouTube" or "Coffee at Starbucks," it classifies transactions into categories such as "Movies & Entertainment" or "Food & Dining."
5
- This model helps users track and organize their spending across various sectors, providing better financial insights and budgeting.
6
- Transactify is trained on real-world transaction data for improved accuracy and generalization.
7
-
8
- Table of contents....
9
-
10
- 1.Data Collection:
11
- The dataset consists of 5,000 transaction records generated using ChatGPT, each containing a transaction description and its corresponding category.
12
- Example entries include descriptions like "Live concert stream on YouTube" (Movies & Entertainment) and "Coffee at Starbucks" (Food & Dining).
13
- These records cover various spending categories such as Lifestyle, Movies & Entertainment, Food & Dining, and others.
14
-
15
-
16
- 2.Data Preprocessing:
17
- The preprocessing step involves several natural language processing (NLP) tasks to clean and prepare the text data for model training.
18
- These include:
19
- Lowercasing all text.
20
- Removing digits and punctuation using regular expressions (regex).
21
- Tokenizing the cleaned text to convert it into a sequence of tokens.
22
- Applying text_to_sequences to transform the tokenized words into numerical sequences.
23
- Using pad_sequences to ensure all sequences have the same length for input into the LSTM model.
24
- Label encoding the target categories to convert them into numerical labels.
25
- After preprocessing, the data is split into training and testing sets to build and validate the model.
26
-
27
-
28
-
29
- 3.Model Building:
30
- Embedding Layer: Converts tokenized transaction descriptions into dense vectors, capturing word semantics and relationships.
31
-
32
- LSTM Layer: Learns sequential patterns from the embedded text, helping the model understand the context and relationships between words over time.
33
-
34
- Dropout Layer: Introduces regularization by randomly turning off neurons during training, reducing overfitting and improving the model's generalization.
35
-
36
- Dense Layer with Softmax Activation: Outputs a probability distribution across categories, allowing the model to predict the correct category for each transaction description.
37
-
38
- Model Compilation: Compiled with the Adam optimizer for efficient learning, sparse categorical cross-entropy loss for multi-class classification, and accuracy as the evaluation metric.
39
-
40
- Model Training: The model is trained for 50 epochs with a batch size of 8, using a validation set to monitor performance and adjust during training.
41
-
42
- Saving the Model and Preprocessing Objects:
43
-
44
- The trained model is saved as transactify.h5 for future use.
45
- The tokenizer and label encoder used during preprocessing are saved using joblib as tokenizer.joblib and label_encoder.joblib, respectively,
46
- ensuring they can be reused for consistent tokenization and label encoding when making predictions on new data.
47
-
48
-
49
-
50
- 4.Prediction:
51
- Once trained, the model is used to predict the category of new transaction descriptions.
52
- The output provides the category label, enabling users to classify their spending based on transaction descriptions.
53
-
54
-
55
-
56
- 5.Conclusion:
57
- The Transactify model effectively categorizes transaction descriptions using LSTM networks.
58
- However, to improve the accuracy and reliability of predictions, a larger and more diverse dataset is necessary.
59
- Expanding the dataset will help the model generalize better across various spending behaviors and conditions.
60
- This enhancement will lead to more precise predictions, enabling users to gain deeper insights into their spending patterns.
61
- Future work should focus on collecting additional data to refine the model's performance and applicability in real-world scenarios.
62
-
63
-
64
- ![Excepted Output:](result.gif)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{data_set → Dataset}/transaction_data.csv RENAMED
@@ -4998,4 +4998,4 @@ Google Play Music,Online Payment
4998
  Yoga class at HealthFit Studio,Lifestyle
4999
  Doctor's appointment payment,Health & Wellness
5000
  New sneakers from Nike,Lifestyle
5001
- Breakfast at Denny's,Food & Dining
 
4998
  Yoga class at HealthFit Studio,Lifestyle
4999
  Doctor's appointment payment,Health & Wellness
5000
  New sneakers from Nike,Lifestyle
5001
+ Breakfast at Denny's,Food & Dining
LSTM_model.py DELETED
@@ -1,62 +0,0 @@
1
- # LSTM_model.py
2
- import numpy as np
3
- from tensorflow.keras.models import Sequential
4
- from tensorflow.keras.layers import Embedding, LSTM, Dense, Dropout
5
- from data_preprocessing import preprocess_data, split_data
6
- import joblib # To save the tokenizer and label encoder
7
-
8
- # Define the LSTM model
9
- def build_lstm_model(vocab_size, embedding_dim=64, max_len=10, lstm_units=128, dropout_rate=0.2, output_units=6):
10
- model = Sequential()
11
- model.add(Embedding(input_dim=vocab_size, output_dim=embedding_dim, input_length=max_len))
12
- model.add(LSTM(units=lstm_units, return_sequences=False))
13
- model.add(Dropout(dropout_rate))
14
- model.add(Dense(units=output_units, activation='softmax'))
15
-
16
- model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
17
-
18
- return model
19
-
20
- # Main function to execute the training process
21
- def main():
22
- # Path to your data file
23
- data_path = r"E:\transactify\transactify\transactify\transactify\transactify\data_set\transaction_data.csv"
24
-
25
- # Preprocess the data
26
- sequences, labels, tokenizer, label_encoder = preprocess_data(data_path)
27
-
28
- # Check if preprocessing succeeded
29
- if sequences is not None:
30
- print("Data preprocessing successful!")
31
-
32
- # Split the data into training and testing sets
33
- X_train, X_test, y_train, y_test = split_data(sequences, labels)
34
- print(f"Training data shape: {X_train.shape}, Training labels shape: {y_train.shape}")
35
- print(f"Testing data shape: {X_test.shape}, Testing labels shape: {y_test.shape}")
36
-
37
- # Build the LSTM model
38
- vocab_size = tokenizer.num_words + 1 # +1 for padding token
39
- model = build_lstm_model(vocab_size, max_len=10, output_units=len(label_encoder.classes_))
40
-
41
- # Train the model
42
- model.fit(X_train, y_train, epochs=50, batch_size=8, validation_data=(X_test, y_test))
43
-
44
- # Evaluate the model
45
- loss, accuracy = model.evaluate(X_test, y_test)
46
- print(f"Test Loss: {loss:.4f}, Test Accuracy: {accuracy:.4f}")
47
-
48
- # Save the model
49
- model.save('transactify.h5')
50
- print("Model saved as 'transactify.h5'")
51
-
52
- # Save the tokenizer and label encoder
53
- joblib.dump(tokenizer, 'tokenizer.joblib')
54
- joblib.dump(label_encoder, 'label_encoder.joblib')
55
- print("Tokenizer and LabelEncoder saved as 'tokenizer.joblib' and 'label_encoder.joblib'")
56
-
57
- else:
58
- print("Data preprocessing failed.")
59
-
60
- # Execute the main function
61
- if __name__ == "__main__":
62
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -2,62 +2,4 @@
2
  license: mit
3
  language:
4
  - en
5
- ---
6
-
7
- ## What is Transactify?
8
- Transactify is an LSTM-based model designed to predict the category of online payment transactions from their descriptions.
9
- By analyzing textual inputs like "Live concert stream on YouTube" or "Coffee at Starbucks," it classifies transactions into categories such as "Movies & Entertainment" or "Food & Dining."
10
- This model helps users track and organize their spending across various sectors, providing better financial insights and budgeting.
11
- Transactify is trained on real-world transaction data for improved accuracy and generalization.
12
-
13
- ## Table of contents
14
- ## 1. Data Collection
15
- The dataset consists of **5,000 transaction records** generated using ChatGPT, each containing a transaction description and its corresponding category.
16
-
17
- Example entries include:
18
- - "Live concert stream on YouTube" (Movies & Entertainment)
19
- - "Coffee at Starbucks" (Food & Dining)
20
-
21
- These records cover various spending categories such as **Lifestyle**, **Movies & Entertainment**, **Food & Dining**, and others.
22
-
23
- ---
24
-
25
- ## 2. Data Preprocessing
26
- The preprocessing step involves several natural language processing (NLP) tasks to clean and prepare the text data for model training. These include:
27
-
28
- - Lowercasing all text.
29
- - Removing digits and punctuation using regular expressions (regex).
30
- - Tokenizing the cleaned text to convert it into a sequence of tokens.
31
- - Applying `text_to_sequences` to transform the tokenized words into numerical sequences.
32
- - Using `pad_sequences` to ensure all sequences have the same length for input into the LSTM model.
33
- - Label encoding the target categories to convert them into numerical labels.
34
-
35
- After preprocessing, the data is split into training and testing sets to build and validate the model.
36
-
37
- ---
38
-
39
- ## 3. Model Building
40
- - **Embedding Layer**: Converts tokenized transaction descriptions into dense vectors, capturing word semantics and relationships.
41
-
42
- - **LSTM Layer**: Learns sequential patterns from the embedded text, helping the model understand the context and relationships between words over time.
43
-
44
- - **Dropout Layer**: Introduces regularization by randomly turning off neurons during training, reducing overfitting and improving the model's generalization.
45
-
46
- - **Dense Layer with Softmax Activation**: Outputs a probability distribution across categories, allowing the model to predict the correct category for each transaction description.
47
-
48
- ### Model Compilation
49
- - Compiled with the Adam optimizer for efficient learning.
50
- - Sparse categorical cross-entropy loss for multi-class classification.
51
- - Accuracy as the evaluation metric.
52
-
53
- ### Model Training
54
- The model is trained for **50 epochs** with a batch size of **8**, using a validation set to monitor performance and adjust during training.
55
-
56
- ### Saving the Model and Preprocessing Objects
57
- - The trained model is saved as `transactify.h5` for future use.
58
- - The tokenizer and label encoder used during preprocessing are saved using joblib as `tokenizer.joblib` and `label_encoder.joblib`, respectively, ensuring they can be reused for consistent tokenization and label encoding when making predictions on new data.
59
-
60
- ---
61
-
62
- ## 4. Prediction
63
- Once trained
 
2
  license: mit
3
  language:
4
  - en
5
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
__pycache__/data_preprocessing.cpython-312.pyc DELETED
Binary file (3.55 kB)
 
__pycache__/inference.cpython-312.pyc DELETED
Binary file (2.21 kB)
 
bert_model.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import Required Libraries
2
+ import torch
3
+ import torch.nn as nn
4
+ from torch.utils.data import DataLoader, TensorDataset
5
+ from transformers import BertModel, AdamW
6
+ from sklearn.metrics import accuracy_score
7
+ import numpy as np
8
+
9
+ # Import functions from the preprocessing module
10
+ from transactify.data_preprocessing import preprocessing_data, split_data, read_data
11
+
12
+ # Define a BERT-based classification model
13
+ class BertClassifier(nn.Module):
14
+ def __init__(self, num_labels, dropout_rate=0.3):
15
+ super(BertClassifier, self).__init__()
16
+ self.bert = BertModel.from_pretrained("bert-base-uncased")
17
+ self.dropout = nn.Dropout(dropout_rate)
18
+ self.classifier = nn.Linear(self.bert.config.hidden_size, num_labels)
19
+
20
+ def forward(self, input_ids, attention_mask):
21
+ outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
22
+ pooled_output = outputs[1] # Pooler output (CLS token)
23
+ output = self.dropout(pooled_output)
24
+ logits = self.classifier(output)
25
+ return logits
26
+
27
+ # Training the model
28
+ # Training the model
29
+ def train_model(model, train_dataloader, val_dataloader, device, epochs=3, lr=2e-5):
30
+ optimizer = AdamW(model.parameters(), lr=lr)
31
+ loss_fn = nn.CrossEntropyLoss()
32
+
33
+ for epoch in range(epochs):
34
+ model.train()
35
+ total_train_loss = 0
36
+ for step, batch in enumerate(train_dataloader):
37
+ b_input_ids, b_input_mask, b_labels = batch
38
+
39
+ b_input_ids = b_input_ids.to(device)
40
+ b_input_mask = b_input_mask.to(device)
41
+ b_labels = b_labels.to(device).long() # Ensure labels are LongTensor
42
+
43
+ model.zero_grad()
44
+ outputs = model(b_input_ids, b_input_mask)
45
+
46
+ loss = loss_fn(outputs, b_labels)
47
+ total_train_loss += loss.item()
48
+ loss.backward()
49
+ optimizer.step()
50
+
51
+ avg_train_loss = total_train_loss / len(train_dataloader)
52
+ print(f"Epoch {epoch+1}, Training Loss: {avg_train_loss}")
53
+
54
+ model.eval()
55
+ total_val_accuracy = 0
56
+ total_val_loss = 0
57
+
58
+ with torch.no_grad():
59
+ for batch in val_dataloader:
60
+ b_input_ids, b_input_mask, b_labels = batch
61
+ b_input_ids = b_input_ids.to(device)
62
+ b_input_mask = b_input_mask.to(device)
63
+ b_labels = b_labels.to(device)
64
+
65
+ outputs = model(b_input_ids, b_input_mask)
66
+ loss = loss_fn(outputs, b_labels)
67
+ total_val_loss += loss.item()
68
+
69
+ preds = torch.argmax(outputs, dim=1)
70
+ total_val_accuracy += (preds == b_labels).sum().item()
71
+
72
+ avg_val_accuracy = total_val_accuracy / len(val_dataloader.dataset)
73
+ avg_val_loss = total_val_loss / len(val_dataloader)
74
+ print(f"Validation Loss: {avg_val_loss}, Validation Accuracy: {avg_val_accuracy}")
75
+
76
+ # Testing the model
77
+ def test_model(model, test_dataloader, device):
78
+ model.eval()
79
+ all_preds = []
80
+ all_labels = []
81
+ with torch.no_grad():
82
+ for batch in test_dataloader:
83
+ b_input_ids, b_input_mask, b_labels = batch
84
+ b_input_ids = b_input_ids.to(device)
85
+ b_input_mask = b_input_mask.to(device)
86
+ b_labels = b_labels.to(device)
87
+
88
+ outputs = model(b_input_ids, b_input_mask)
89
+ preds = torch.argmax(outputs, dim=1)
90
+
91
+ all_preds.append(preds.cpu().numpy())
92
+ all_labels.append(b_labels.cpu().numpy())
93
+
94
+ all_preds = np.concatenate(all_preds)
95
+ all_labels = np.concatenate(all_labels)
96
+ accuracy = accuracy_score(all_labels, all_preds)
97
+ print(f"Test Accuracy: {accuracy}")
98
+
99
+ # Main function to train, validate, and test the model
100
+ def main(data_path, epochs=3, batch_size=16):
101
+ # Read and preprocess data
102
+ data = read_data(data_path)
103
+ if data is None:
104
+ return
105
+
106
+ input_ids, attention_masks, labels, labelencoder = preprocessing_data(data)
107
+ X_train_ids, X_test_ids, X_train_masks, X_test_masks, y_train, y_test = split_data(input_ids, attention_masks, labels)
108
+
109
+ # Determine the number of labels
110
+ num_labels = len(labelencoder.classes_)
111
+
112
+ # Create the model
113
+ model = BertClassifier(num_labels)
114
+
115
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
116
+ model.to(device)
117
+
118
+ # Create dataloaders
119
+ train_dataset = TensorDataset(X_train_ids, X_train_masks, y_train)
120
+ train_dataloader = DataLoader(train_dataset, batch_size=batch_size)
121
+
122
+ val_dataset = TensorDataset(X_test_ids, X_test_masks, y_test)
123
+ val_dataloader = DataLoader(val_dataset, batch_size=batch_size)
124
+
125
+ # Train the model
126
+ train_model(model, train_dataloader, val_dataloader, device, epochs=epochs)
127
+
128
+ # Test the model
129
+ test_dataloader = DataLoader(val_dataset, batch_size=batch_size)
130
+ test_model(model, test_dataloader, device)
131
+
132
+ if __name__ == "__main__":
133
+ data_path = r"E:\transactify\transactify\Dataset\transaction_data.csv"
134
+ main(data_path)
config.json DELETED
@@ -1,35 +0,0 @@
1
- {
2
- "model_type": "custom",
3
- "architectures": ["LSTM"],
4
- "library_name": "tensorflow",
5
- "task_specific_params": {
6
- "text-classification": {
7
- "vocab_size": 500,
8
- "embedding_dim": 64,
9
- "hidden_size": 64,
10
- "num_layers": 2,
11
- "dropout_rate": 0.2,
12
- "max_sequence_length": 10
13
- }
14
- },
15
- "training_params": {
16
- "batch_size": 8,
17
- "epochs": 50,
18
- "loss_function": "sparse_categorical_crossentropy",
19
- "optimizer": "adam",
20
- "metrics": ["accuracy"]
21
- },
22
- "train_data_size": 5000,
23
- "id2label": {
24
- "0": "Lifestyle",
25
- "1": "Movies & Entertainment",
26
- "2": "Food & Dining",
27
- "3": "Others"
28
- },
29
- "label2id": {
30
- "Lifestyle": 0,
31
- "Movies & Entertainment": 1,
32
- "Food & Dining": 2,
33
- "Others": 3
34
- }
35
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data_preprocessing.py CHANGED
@@ -1,11 +1,12 @@
1
- # data_preprocessing.py
2
  import numpy as np
3
  import pandas as pd
4
- import re
 
 
5
  from sklearn.preprocessing import LabelEncoder
6
  from sklearn.model_selection import train_test_split
7
- from tensorflow.keras.preprocessing.text import Tokenizer
8
- from tensorflow.keras.preprocessing.sequence import pad_sequences
9
 
10
  # Read the data
11
  def read_data(path):
@@ -22,62 +23,95 @@ def read_data(path):
22
  print(f"An error occurred: {e}")
23
  return None
24
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  # Cleaning the text
26
  def clean_text(text):
27
- text = text.lower() # Convert uppercase to lowercase
28
- text = re.sub(r"\d+", " ", text) # Remove digits
29
- text = re.sub(r"[^\w\s]", " ", text) # Remove punctuations
30
  text = text.strip() # Remove extra spaces
31
  return text
32
 
33
- # Main preprocessing function
34
- def preprocess_data(file_path, max_len=10, vocab_size=250):
35
- # Read the data
36
- df = read_data(file_path)
37
- if df is None:
38
- print("Data loading failed.")
39
- return None, None, None, None
40
-
41
- # Clean the text
42
- df['Transaction Description'] = df['Transaction Description'].apply(clean_text)
43
 
44
- # Initialize the tokenizer
45
- tokenizer = Tokenizer(num_words=vocab_size, oov_token="<OOV>")
46
- tokenizer.fit_on_texts(df['Transaction Description'])
47
 
48
- # Convert texts to sequences and pad them
49
- sequences = tokenizer.texts_to_sequences(df['Transaction Description'])
50
- padded_sequences = pad_sequences(sequences, maxlen=max_len, padding='post', truncating='post')
51
 
52
- # Initialize LabelEncoder and encode the labels
53
- label_encoder = LabelEncoder()
54
- labels = label_encoder.fit_transform(df['Category'])
55
-
56
- return padded_sequences, labels, tokenizer, label_encoder
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
- # Train-test split function
59
- def split_data(sequences, labels, test_size=0.2, random_state=42):
60
- X_train, X_test, y_train, y_test = train_test_split(sequences, labels, test_size=test_size, random_state=random_state)
61
- return X_train, X_test, y_train, y_test
 
 
62
 
63
- # Main function to execute preprocessing
64
- def main():
65
- # Path to your data file
66
- data_path = r"E:\transactify\transactify\Dataset\transaction_data.csv"
 
 
 
 
 
 
67
 
68
- # Preprocess the data
69
- sequences, labels, tokenizer, label_encoder = preprocess_data(data_path)
 
 
 
 
 
 
 
 
 
70
 
71
- # Check if preprocessing succeeded
72
- if sequences is not None:
73
- print("Data preprocessing successful!")
74
- # Split the data into training and testing sets
75
- X_train, X_test, y_train, y_test = split_data(sequences, labels)
76
- print(f"Training data shape: {X_train.shape}, Training labels shape: {y_train.shape}")
77
- print(f"Testing data shape: {X_test.shape}, Testing labels shape: {y_test.shape}")
78
- else:
79
- print("Data preprocessing failed.")
80
 
81
- # Execute the main function
82
- if __name__ == "__main__":
83
- main()
 
1
+ # Import Required Libraries:
2
  import numpy as np
3
  import pandas as pd
4
+
5
+ import torch
6
+ from transformers import BertTokenizer
7
  from sklearn.preprocessing import LabelEncoder
8
  from sklearn.model_selection import train_test_split
9
+ import re
 
10
 
11
  # Read the data
12
  def read_data(path):
 
23
  print(f"An error occurred: {e}")
24
  return None
25
 
26
+ # Path to your data file
27
+ data_path = r"E:\transactify\transactify\Dataset\transaction_data.csv"
28
+
29
+ # Read the data and check if it was loaded successfully
30
+ data = read_data(data_path)
31
+ if data is not None:
32
+ print("Data loaded successfully:")
33
+ print(data.head(15))
34
+ else:
35
+ print("Data loading failed. Exiting...")
36
+ exit()
37
+
38
  # Cleaning the text
39
  def clean_text(text):
40
+ text = text.lower() # Converting uppercase to lowercase
41
+ text = re.sub(r"\d+", " ", text) # Removing digits in the text
42
+ text = re.sub(r"[^\w\s]", " ", text) # Removing punctuations
43
  text = text.strip() # Remove extra spaces
44
  return text
45
 
46
+ # Preprocessing the data
47
+ def preprocessing_data(df, max_length=20):
48
+ tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
 
 
 
 
 
 
 
49
 
50
+ input_ids = []
51
+ attention_masks = []
 
52
 
53
+ # Ensure the dataframe has the required columns
54
+ if "Transaction Description" not in df.columns or "Category" not in df.columns:
55
+ raise ValueError("The required columns 'Transaction Description' and 'Category' are missing from the dataset.")
56
 
57
+ for description in df["Transaction Description"]:
58
+ cleaned_text = clean_text(description)
59
+
60
+ # Debugging print statements
61
+ # print(f"Original Description: {description}")
62
+ # print(f"Cleaned Text: {cleaned_text}")
63
+
64
+ # Only tokenize if the cleaned text is not empty
65
+ if cleaned_text:
66
+ encoded_dict = tokenizer.encode_plus(
67
+ cleaned_text,
68
+ add_special_tokens=True, # Add special tokens for BERT
69
+ max_length=max_length,
70
+ pad_to_max_length=True,
71
+ return_attention_mask=True,
72
+ return_tensors="pt",
73
+ truncation=True
74
+ )
75
+
76
+ input_ids.append(encoded_dict['input_ids']) # Append input IDs
77
+ attention_masks.append(encoded_dict['attention_mask']) # Append attention masks
78
+ else:
79
+ print("Cleaned text is empty, skipping...")
80
 
81
+ # Debugging output to check sizes
82
+ print(f"Total input_ids collected: {len(input_ids)}")
83
+ print(f"Total attention_masks collected: {len(attention_masks)}")
84
+
85
+ if not input_ids:
86
+ raise ValueError("No input_ids were collected. Check the cleaning process.")
87
 
88
+ # Concatenating the list of tensors to form a single tensor
89
+ input_ids = torch.cat(input_ids, dim=0)
90
+ attention_masks = torch.cat(attention_masks, dim=0)
91
+
92
+ # Encoding the labels
93
+ labelencoder = LabelEncoder()
94
+ labels = labelencoder.fit_transform(df["Category"])
95
+ labels = torch.tensor(labels, dtype=torch.long) # Convert labels to LongTensor
96
+
97
+ return input_ids, attention_masks, labels, labelencoder
98
 
99
+ # Split the data into train and test sets
100
+ def split_data(input_ids, attention_masks, labels, test_size=0.2, random_state=42):
101
+ X_train_ids, X_test_ids, y_train, y_test = train_test_split(
102
+ input_ids, labels, test_size=test_size, random_state=random_state
103
+ )
104
+
105
+ X_train_masks, X_test_masks = train_test_split(
106
+ attention_masks, test_size=test_size, random_state=random_state
107
+ )
108
+
109
+ return X_train_ids, X_test_ids, X_train_masks, X_test_masks, y_train, y_test
110
 
111
+ # Preprocess the data and split into train and test sets
112
+ input_ids, attention_masks, labels, labelencoder = preprocessing_data(data)
113
+ X_train_ids, X_test_ids, X_train_masks, X_test_masks, y_train, y_test = split_data(input_ids, attention_masks, labels)
 
 
 
 
 
 
114
 
115
+ # Output the sizes of the splits for confirmation
116
+ print(f"Training set size: {X_train_ids.shape[0]}")
117
+ print(f"Test set size: {X_test_ids.shape[0]}")
main.py DELETED
@@ -1,57 +0,0 @@
1
- # main.py
2
- import numpy as np
3
- import pandas as pd
4
- from tensorflow.keras.models import load_model
5
- from tensorflow.keras.preprocessing.text import Tokenizer
6
- from tensorflow.keras.preprocessing.sequence import pad_sequences
7
- import joblib
8
- import re
9
-
10
- # Function to clean the input text
11
- def clean_text(text):
12
- text = text.lower()
13
- text = re.sub(r"\d+", " ", text)
14
- text = re.sub(r"[^\w\s]", " ", text)
15
- text = text.strip()
16
- return text
17
-
18
- # Load the model, tokenizer, and label encoder
19
- def load_resources(model_path, tokenizer_path, label_encoder_path):
20
- model = load_model(model_path)
21
- tokenizer = joblib.load(tokenizer_path)
22
- label_encoder = joblib.load(label_encoder_path)
23
- return model, tokenizer, label_encoder
24
-
25
- # Function to make predictions
26
- def predict(model, tokenizer, label_encoder, input_text, max_len=50):
27
- cleaned_text = clean_text(input_text)
28
- sequence = tokenizer.texts_to_sequences([cleaned_text])
29
- padded_sequence = pad_sequences(sequence, maxlen=max_len, padding='post', truncating='post')
30
-
31
- # Make prediction
32
- prediction = model.predict(padded_sequence)
33
- predicted_class = np.argmax(prediction, axis=1)
34
-
35
- # Decode the label
36
- predicted_label = label_encoder.inverse_transform(predicted_class)
37
-
38
- return predicted_label[0]
39
-
40
- # Main function for running predictions
41
- def main():
42
- # Paths to your resources
43
- model_path = 'transactify.h5' # Update with the correct path if needed
44
- tokenizer_path = 'tokenizer.joblib' # Update with the correct path if needed
45
- label_encoder_path = 'label_encoder.joblib' # Update with the correct path if needed
46
-
47
- # Load resources
48
- model, tokenizer, label_encoder = load_resources(model_path, tokenizer_path, label_encoder_path)
49
-
50
- # Input for prediction
51
- input_text = input("Enter a transaction description for prediction: ")
52
- predicted_category = predict(model, tokenizer, label_encoder, input_text)
53
- print(f"The predicted category is: {predicted_category}")
54
-
55
- # Execute the main function
56
- if __name__ == "__main__":
57
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model.py DELETED
@@ -1,25 +0,0 @@
1
- from tensorflow.keras.models import load_model
2
- import joblib
3
- from tensorflow.keras.preprocessing.sequence import pad_sequences
4
- import numpy as np
5
- import re
6
-
7
- # Load the model, tokenizer, and label encoder
8
- model = load_model("transactify.h5")
9
- tokenizer = joblib.load("tokenizer.joblib")
10
- label_encoder = joblib.load("label_encoder.joblib")
11
-
12
- def clean_text(text):
13
- text = text.lower()
14
- text = re.sub(r"\d+", "", text)
15
- text = re.sub(r"[^\w\s]", "", text)
16
- return text.strip()
17
-
18
- def predict(text):
19
- cleaned_text = clean_text(text)
20
- sequence = tokenizer.texts_to_sequences([cleaned_text])
21
- padded_sequence = pad_sequences(sequence, maxlen=100)
22
- prediction = model.predict(padded_sequence)
23
- predicted_label = np.argmax(prediction, axis=1)
24
- category = label_encoder.inverse_transform(predicted_label)
25
- return {"category": category[0]}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,4 +1,8 @@
1
  numpy
2
  pandas
3
  tensorflow
 
4
  scikit-learn
 
 
 
 
1
  numpy
2
  pandas
3
  tensorflow
4
+ transformers
5
  scikit-learn
6
+ torch
7
+ torchvision
8
+ torchaudio
setup.md CHANGED
@@ -1,53 +1,59 @@
 
 
 
 
 
1
 
2
- # Steps to Run the Model
3
-
4
- 1. **Clone the Repository**:
5
- Open your command line interface (CLI) and clone the repository using:
6
- ```bash
7
- git clone https://huggingface.co/webslate/transactify
8
- ```
9
-
10
- 2. **Create the Virtual Environment**:
11
- Navigate to the project directory and create a virtual environment:
12
- ```bash
13
- python -m venv transactify_venv
14
- ```
15
-
16
- 3. **Activate the Virtual Environment**:
17
- To activate the virtual environment, follow these steps:
18
- - Open your command line interface (CLI).
19
- - Type the following commands:
20
- ```bash
21
- cd transactify_venv
22
- cd Scripts
23
- activate
24
- ```
25
-
26
- 4. **Install Required Libraries**:
27
- After activating the virtual environment, install the necessary libraries by typing:
28
- ```bash
29
- pip install -r requirements.txt
30
- ```
31
-
32
- 5. **Run the Data Preprocessing Code**:
33
- Execute the data preprocessing script by typing:
34
- ```bash
35
- python data_preprocessing.py
36
- ```
37
-
38
- 6. **Run the LSTM Model Code**:
39
- Train the LSTM model by executing:
40
- ```bash
41
- python LSTM_model.py
42
- ```
43
-
44
- 7. **Generate the H5 File**:
45
- After training, you can generate the model file (`transactify.h5`).
46
-
47
- 8. **Run the Prediction Code**:
48
- To make predictions using the trained model, type:
49
- ```bash
50
- python main.py
51
- ```
52
-
53
- Following these steps will set up and run the Transactify model for predicting transaction categories based on descriptions.
 
 
1
+ ## Install Git LFS
2
+ ```
3
+ brew install git-lfs
4
+ ```
5
+ or download from https://git-lfs.github.com/
6
 
7
+ ## Update global git config
8
+ ```
9
+ $ git lfs install
10
+ ```
11
+
12
+ ## Update system git config
13
+ ```
14
+ $ git lfs install --system
15
+ ```
16
+
17
+ ## Clone the Repo
18
+
19
+ ### Entire Clone
20
+ ```
21
+ git clone https://huggingface.co/webslate/transactify
22
+ ```
23
+
24
+ ### Light Clone
25
+ ```
26
+ GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/webslate/transactify
27
+ ```
28
+
29
+ ## For Pushing the Code
30
+
31
+ > Refer to https://huggingface.co/blog/password-git-deprecation
32
+
33
+ ### Set the Remote URL
34
+ ```
35
+ $: git remote set-url origin https://<user_name>:<token>@huggingface.co/<repo_path>
36
+ ```
37
+ ### Token Creation
38
+
39
+ > Go to Settings > Access Tokens > Create new token >
40
+ Choose Write Tab (3rd one) / go here https://huggingface.co/settings/tokens/new?tokenType=write
41
+
42
+
43
+ ## Create Virtual Environment
44
+
45
+ ```
46
+ create a Virtual Environment for Transactify project...
47
+ python -m venv transactify_venv
48
+
49
+ To activate environment..
50
+ go to cmd ..
51
+ type >> cd transactify_venv
52
+ >> cd scripts
53
+ >> activate
54
+ ```
55
+ ## Installing Required Libaries.
56
+
57
+ to install required libaries...
58
+ go to cmd..
59
+ type >>pip install -r requirements.txt