|
--- |
|
base_model: |
|
- openai/whisper-large-v3 |
|
language: |
|
- en |
|
- zh |
|
- de |
|
- es |
|
- ru |
|
- ko |
|
- fr |
|
- ja |
|
- pt |
|
- tr |
|
- pl |
|
- ca |
|
- nl |
|
- ar |
|
- sv |
|
- it |
|
- id |
|
- hi |
|
- fi |
|
- vi |
|
- he |
|
- uk |
|
- el |
|
- ms |
|
- cs |
|
- ro |
|
- da |
|
- hu |
|
- ta |
|
- 'no' |
|
- th |
|
- ur |
|
- hr |
|
- bg |
|
- lt |
|
- la |
|
- mi |
|
- ml |
|
- cy |
|
- sk |
|
- te |
|
- fa |
|
- lv |
|
- bn |
|
- sr |
|
- az |
|
- sl |
|
- kn |
|
- et |
|
- mk |
|
- br |
|
- eu |
|
- is |
|
- hy |
|
- ne |
|
- mn |
|
- bs |
|
- kk |
|
- sq |
|
- sw |
|
- gl |
|
- mr |
|
- pa |
|
- si |
|
- km |
|
- sn |
|
- yo |
|
- so |
|
- af |
|
- oc |
|
- ka |
|
- be |
|
- tg |
|
- sd |
|
- gu |
|
- am |
|
- yi |
|
- lo |
|
- uz |
|
- fo |
|
- ht |
|
- ps |
|
- tk |
|
- nn |
|
- mt |
|
- sa |
|
- lb |
|
- my |
|
- bo |
|
- tl |
|
- mg |
|
- as |
|
- tt |
|
- haw |
|
- ln |
|
- ha |
|
- ba |
|
- jw |
|
- su |
|
library_name: transformers |
|
license: apache-2.0 |
|
pipeline_tag: automatic-speech-recognition |
|
tags: |
|
- asr |
|
- Pytorch |
|
- pruned |
|
- audio |
|
- automatic-speech-recognition |
|
--- |
|
|
|
# Whisper-large-v3-no-numbers |
|
|
|
## Model info |
|
This is a version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) model without number tokens (token ids corresponding to numbers are excluded). |
|
NO fine-tuning was used. |
|
|
|
Phrases with spoken numbers will be transcribed with numbers as words. It can be useful for TTS data preparation. |
|
|
|
**Example**: Instead of **"25"** this model will transcribe phrase as **"twenty five"**. |
|
|
|
## Usage |
|
`transformers` version `4.45.2` |
|
|
|
Model can be used as an original whisper: |
|
|
|
```python |
|
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration |
|
>>> import torchaudio |
|
|
|
>>> # load audio |
|
>>> wav, sr = torchaudio.load("audio.wav") |
|
>>> # resample if necessary |
|
>>> wav = torchaudio.functional.resample(wav, sr, 16000) |
|
|
|
>>> # load model and processor |
|
>>> processor = WhisperProcessor.from_pretrained("waveletdeboshir/whisper-large-v3-no-numbers") |
|
>>> model = WhisperForConditionalGeneration.from_pretrained("waveletdeboshir/whisper-large-v3-no-numbers") |
|
|
|
>>> input_features = processor(wav[0], sampling_rate=16000, return_tensors="pt").input_features |
|
|
|
>>> # generate token ids |
|
>>> predicted_ids = model.generate(input_features) |
|
>>> # decode token ids to text |
|
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False) |
|
['<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Twenty seven years. <|endoftext|>'] |
|
|
|
``` |
|
The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`. |