xlm-roberta-base-reddit-indonesia-sarcastic
This model is a fine-tuned version of xlm-roberta-base on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5093
- Accuracy: 0.8031
- F1: 0.5690
- Precision: 0.6284
- Recall: 0.5198
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 100.0
- mixed_precision_training: Native AMP
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
F1 |
Precision |
Recall |
0.5174 |
1.0 |
309 |
0.4618 |
0.7725 |
0.4641 |
0.5650 |
0.3938 |
0.4462 |
2.0 |
618 |
0.4407 |
0.7994 |
0.5428 |
0.6316 |
0.4759 |
0.3952 |
3.0 |
927 |
0.4690 |
0.8037 |
0.4991 |
0.69 |
0.3909 |
0.3525 |
4.0 |
1236 |
0.4905 |
0.8079 |
0.5152 |
0.6990 |
0.4079 |
0.3102 |
5.0 |
1545 |
0.4741 |
0.8122 |
0.5917 |
0.6486 |
0.5439 |
0.2645 |
6.0 |
1854 |
0.4964 |
0.8101 |
0.5976 |
0.6358 |
0.5637 |
0.2168 |
7.0 |
2163 |
0.5216 |
0.8079 |
0.5824 |
0.6385 |
0.5354 |
0.1759 |
8.0 |
2472 |
0.6826 |
0.8044 |
0.5818 |
0.6254 |
0.5439 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0