metadata
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: baseline-ft-mrpc-IRoberta-b-unquantized
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.8995098039215687
- name: F1
type: f1
value: 0.9266547406082289
baseline-ft-mrpc-IRoberta-b-unquantized
This model is a fine-tuned version of kssteven/ibert-roberta-base on the glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.5354
- Accuracy: 0.8995
- F1: 0.9267
- Combined Score: 0.9131
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
0.1212 | 1.0 | 230 | 0.3401 | 0.8799 | 0.9136 | 0.8967 |
0.0347 | 2.0 | 460 | 0.3085 | 0.8676 | 0.9059 | 0.8868 |
0.0495 | 3.0 | 690 | 0.3552 | 0.8848 | 0.9174 | 0.9011 |
0.0024 | 4.0 | 920 | 0.4960 | 0.8824 | 0.9158 | 0.8991 |
0.0046 | 5.0 | 1150 | 0.5354 | 0.8995 | 0.9267 | 0.9131 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3