metadata
tags:
- spacy
- token-classification
language:
- fr
model-index:
- name: fr_pipeline
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.9011406844
- name: NER Recall
type: recall
value: 0.92578125
- name: NER F Score
type: f_score
value: 0.9132947977
Feature | Description |
---|---|
Name | fr_pipeline |
Version | 0.0.0 |
spaCy | >=3.2.1,<3.3.0 |
Default Pipeline | tok2vec , ner |
Components | tok2vec , ner |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | n/a |
License | n/a |
Author | n/a |
Label Scheme
View label scheme (4 labels for 1 components)
Component | Labels |
---|---|
ner |
FOOD PRODUCT , INGREDIENT , MEASURE , QUANTITY |
Accuracy
Type | Score |
---|---|
ENTS_F |
91.33 |
ENTS_P |
90.11 |
ENTS_R |
92.58 |
TOK2VEC_LOSS |
8670.94 |
NER_LOSS |
4165.31 |