W2V2-BERT-Malayalam / README.md
Bajiyo's picture
Upload tokenizer
86518ab verified
|
raw
history blame
2.75 kB
---
license: mit
tags:
- generated_from_trainer
metrics:
- wer
base_model: facebook/w2v-bert-2.0
model-index:
- name: w2v-bert-2.0-nonstudio_and_studioRecords
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# w2v-bert-2.0-nonstudio_and_studioRecords
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1651
- Wer: 0.1279
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 1.4399 | 0.46 | 600 | 0.3709 | 0.4586 |
| 0.1715 | 0.92 | 1200 | 0.2427 | 0.3379 |
| 0.1226 | 1.38 | 1800 | 0.2216 | 0.2919 |
| 0.1073 | 1.84 | 2400 | 0.1992 | 0.2672 |
| 0.0888 | 2.3 | 3000 | 0.1835 | 0.2506 |
| 0.0781 | 2.76 | 3600 | 0.1768 | 0.2491 |
| 0.0671 | 3.22 | 4200 | 0.1702 | 0.2309 |
| 0.0575 | 3.68 | 4800 | 0.1784 | 0.2202 |
| 0.0531 | 4.14 | 5400 | 0.1690 | 0.1881 |
| 0.0421 | 4.6 | 6000 | 0.1707 | 0.1876 |
| 0.0398 | 5.06 | 6600 | 0.1672 | 0.1759 |
| 0.0305 | 5.52 | 7200 | 0.1516 | 0.1575 |
| 0.0306 | 5.98 | 7800 | 0.1576 | 0.1682 |
| 0.0219 | 6.44 | 8400 | 0.1516 | 0.1610 |
| 0.021 | 6.9 | 9000 | 0.1418 | 0.1493 |
| 0.0151 | 7.36 | 9600 | 0.1343 | 0.1359 |
| 0.0133 | 7.82 | 10200 | 0.1410 | 0.1433 |
| 0.0103 | 8.28 | 10800 | 0.1564 | 0.1386 |
| 0.0084 | 8.74 | 11400 | 0.1546 | 0.1276 |
| 0.0067 | 9.2 | 12000 | 0.1622 | 0.1244 |
| 0.0043 | 9.66 | 12600 | 0.1651 | 0.1279 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.1+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1