Whisper small finetuned for Greek transcription
How to use
You can use the model for Greek ASR:
from transformers import WhisperProcessor, WhisperForConditionalGeneration
from datasets import Audio, load_dataset
# load model and processor
processor = WhisperProcessor.from_pretrained("voxreality/whisper-small-el-finetune")
model = WhisperForConditionalGeneration.from_pretrained("voxreality/whisper-small-el-finetune")
forced_decoder_ids = processor.get_decoder_prompt_ids(language="greek", task="transcribe")
# load streaming dataset and read first audio sample
ds = load_dataset("mozilla-foundation/common_voice_11_0", "el", split="test", streaming=True)
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
input_speech = next(iter(ds))["audio"]
input_features = processor(input_speech["array"], sampling_rate=input_speech["sampling_rate"], return_tensors="pt").input_features
# generate token ids
predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
# decode token ids to text
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
You can also use an HF pipeline:
from transformers import pipeline
from datasets import Audio, load_dataset
ds = load_dataset("mozilla-foundation/common_voice_11_0", "el", split="test", streaming=True)
ds = ds.cast_column("audio", Audio(sampling_rate=16_000))
input_speech = next(iter(ds))["audio"]
pipe = pipeline("automatic-speech-recognition", model='voxreality/whisper-small-el-finetune',
device='cpu', batch_size=32)
transcription = pipe(input_speech['array'], generate_kwargs = {"language":f"<|el|>","task": "transcribe"})
- Downloads last month
- 308
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.