Model Card of vocabtrimmer/mt5-small-trimmed-it-5000-itquad-qg

This model is fine-tuned version of vocabtrimmer/mt5-small-trimmed-it-5000 for question generation task on the lmqg/qg_itquad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="it", model="vocabtrimmer/mt5-small-trimmed-it-5000-itquad-qg")

# model prediction
questions = model.generate_q(list_context="Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.", list_answer="Dopo il 1971")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "vocabtrimmer/mt5-small-trimmed-it-5000-itquad-qg")
output = pipe("<hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")

Evaluation

Score Type Dataset
BERTScore 80.39 default lmqg/qg_itquad
Bleu_1 21.98 default lmqg/qg_itquad
Bleu_2 14.25 default lmqg/qg_itquad
Bleu_3 9.79 default lmqg/qg_itquad
Bleu_4 6.94 default lmqg/qg_itquad
METEOR 17.35 default lmqg/qg_itquad
MoverScore 56.63 default lmqg/qg_itquad
ROUGE_L 21.07 default lmqg/qg_itquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_itquad
  • dataset_name: default
  • input_types: paragraph_answer
  • output_types: question
  • prefix_types: None
  • model: vocabtrimmer/mt5-small-trimmed-it-5000
  • max_length: 512
  • max_length_output: 32
  • epoch: 16
  • batch: 16
  • lr: 0.0005
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 4
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train vocabtrimmer/mt5-small-trimmed-it-5000-itquad-qg

Evaluation results