|
--- |
|
language: |
|
- tr |
|
arXiv: 2403.01308 |
|
library_name: transformers |
|
pipeline_tag: text2text-generation |
|
inference: |
|
parameters: |
|
max_new_tokens: 32 |
|
widget: |
|
- text: >- |
|
Soru yarat: cevap: Alan Mathison Turing İngiliz matematikçi, bilgisayar |
|
bilimcisi ve kriptolog. II. Dünya Savaşı sırasında Alman şifrelerinin |
|
kırılmasında çok önemli bir rol oynadığı için savaş kahramanı sayılmıştır. |
|
Ayrıca Manchester Üniversitesi'nde çalıştığı yıllarda, Turing makinesi |
|
denilen algoritma tanımı ile modern bilgisayarların kavramsal temelini |
|
atmıştır. |
|
example_title: Question generation |
|
- text: >- |
|
Soru cevapla: Turing makinesi denilen algoritma tanımı ile modern |
|
bilgisayarların kavramsal temelini atan bilim insanı kimdir? kaynak: Alan |
|
Mathison Turing İngiliz matematikçi, bilgisayar bilimcisi ve kriptolog. II. |
|
Dünya Savaşı sırasında Alman şifrelerinin kırılmasında çok önemli bir rol |
|
oynadığı için savaş kahramanı sayılmıştır. Ayrıca Manchester |
|
Üniversitesi'nde çalıştığı yıllarda, Turing makinesi denilen algoritma |
|
tanımı ile modern bilgisayarların kavramsal temelini atmıştır. |
|
example_title: Question answering |
|
- text: >- |
|
yanıtları çıkar: Alan Mathison Turing İngiliz matematikçi, bilgisayar |
|
bilimcisi ve kriptolog. II. Dünya Savaşı sırasında Alman şifrelerinin |
|
kırılmasında çok önemli bir rol oynadığı için savaş kahramanı sayılmıştır. |
|
<hl> Ayrıca Manchester Üniversitesi'nde çalıştığı yıllarda, Turing makinesi |
|
denilen algoritma tanımı ile modern bilgisayarların kavramsal temelini |
|
atmıştır <hl> . |
|
example_title: Answer Extraction |
|
license: cc-by-nc-sa-4.0 |
|
datasets: |
|
- vngrs-ai/vngrs-web-corpus |
|
--- |
|
# VBART Model Card |
|
|
|
## Model Description |
|
|
|
VBART is the first sequence-to-sequence LLM pre-trained on Turkish corpora from scratch on a large scale. It was pre-trained by VNGRS in February 2023. |
|
The model is capable of conditional text generation tasks such as text summarization, paraphrasing, and title generation when fine-tuned. |
|
It outperforms its multilingual counterparts, albeit being much smaller than other implementations. |
|
|
|
This repository contains fine-tuned TensorFlow and Safetensors weights of VBART for question-answering and generation tasks described in the [paper](https://doi.org/10.55730/1300-0632.3914). |
|
|
|
- **Developed by:** [VNGRS-AI](https://vngrs.com/ai/) |
|
- **Model type:** Transformer encoder-decoder based on mBART architecture |
|
- **Language(s) (NLP):** Turkish |
|
- **License:** CC BY-NC-SA 4.0 |
|
- **Finetuned from:** VBART-Large |
|
- **Paper:** [arXiv](https://arxiv.org/abs/2403.01308) |
|
## How to Get Started with the Model |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("vngrs-ai/VBART-Large-QAQG", |
|
model_input_names=['input_ids', 'attention_mask']) |
|
# Uncomment the device_map kwarg and delete the closing bracket to use model for inference on GPU |
|
model = AutoModelForSeq2SeqLM.from_pretrained("vngrs-ai/VBART-Large-QAQG")#, device_map="auto") |
|
|
|
context="..." |
|
question="..." |
|
highlighted_context="..." |
|
|
|
# Prompt for question generation |
|
qg_prompt = f'Soru yarat: cevap: {context}' |
|
# Prompt for question answering |
|
qa_prompt = f'Soru cevapla: {question} kaynak: {context}' |
|
# Prompt for answer extraction |
|
ae_prompt = f'yanıtları çıkar: {highlighted_context}' |
|
|
|
|
|
token_input = tokenizer(ae_prompt, return_tensors="pt")#.to('cuda') |
|
outputs = model.generate(**token_input) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
## Training Details |
|
### Fine-tuning prompt |
|
This model is fine-tuned on three tasks: |
|
- question answering: Answer a question in a given context. Prompted with |
|
```Soru cevapla: <question> kaynak: <context>``` |
|
- question generation: Generate a question from a given context. Will accept a highlight token (`<hl>`, without spaces) to specify the answer to the question generated. Prompted with |
|
```Soru yarat: <context>``` |
|
- answer extraction: Will extract possible answers from a highlighted range (using the same highlight token). Prompted with |
|
``` yanıtları çıkar: <context with highlighted parts>``` |
|
|
|
### Training Data |
|
The base model is pre-trained on [vngrs-web-corpus](https://huggingface.co/datasets/vngrs-ai/vngrs-web-corpus). It is curated by cleaning and filtering Turkish parts of [OSCAR-2201](https://huggingface.co/datasets/oscar-corpus/OSCAR-2201) and [mC4](https://huggingface.co/datasets/mc4) datasets. These datasets consist of documents of unstructured web crawl data. More information about the dataset can be found on their respective pages. Data is filtered using a set of heuristics and certain rules, explained in the appendix of our [paper](https://arxiv.org/abs/2403.01308). |
|
|
|
The fine-tuning dataset is [TQuAD](https://github.com/obss/turkish-question-generation), which has two versions. We have concatenated them and dropped duplicate samples. More information about this process can be found in Appendix B of our [paper](https://arxiv.org/abs/2403.01308). |
|
|
|
### Limitations |
|
This model is fine-tuned for question-answering and question-generation tasks with specific prompts. It is not intended to be used in any other case and can not be fine-tuned to any other task with full performance of the base model. It is also not guaranteed that this model will work without specified prompts. |
|
|
|
### Training Procedure |
|
Pre-trained for 30 days and for a total of 708B tokens. Finetuned for 5 epoch. |
|
#### Hardware |
|
- **GPUs**: 8 x Nvidia A100-80 GB |
|
#### Software |
|
- TensorFlow |
|
#### Hyperparameters |
|
##### Pretraining |
|
- **Training regime:** fp16 mixed precision |
|
- **Training objective**: Sentence permutation and span masking (using mask lengths sampled from Poisson distribution λ=3.5, masking 30% of tokens) |
|
- **Optimizer** : Adam optimizer (β1 = 0.9, β2 = 0.98, Ɛ = 1e-6) |
|
- **Scheduler**: Custom scheduler from the original Transformers paper (20,000 warm-up steps) |
|
- **Dropout**: 0.1 (dropped to 0.05 and then to 0 in the last 165k and 205k steps, respectively) |
|
- **Initial Learning rate**: 5e-6 |
|
- **Training tokens**: 708B |
|
|
|
##### Fine-tuning |
|
- **Training regime:** fp16 mixed precision |
|
- **Optimizer** : Adam optimizer (β1 = 0.9, β2 = 0.98, Ɛ = 1e-6) |
|
- **Scheduler**: Linear decay scheduler |
|
- **Dropout**: 0.1 |
|
- **Learning rate**: 5e-5 |
|
- **Fine-tune epochs**: 5 |
|
|
|
#### Metrics |
|
 |
|
|
|
## Citation |
|
``` |
|
@article{turker2024vbart, |
|
title={VBART: The Turkish LLM}, |
|
author={Turker, Meliksah and Ari, Erdi and Han, Aydin}, |
|
journal={arXiv preprint arXiv:2403.01308}, |
|
year={2024} |
|
} |
|
``` |