whisper-medium-konnakol-rests

This model is a fine-tuned version of openai/whisper-medium on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0952
  • Wer: 25.9953

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6638 13.3333 50 0.0648 50.5855
0.0132 26.6667 100 0.0678 40.7494
0.0068 40.0 150 0.0794 30.6792
0.0033 53.3333 200 0.0909 28.3372
0.0008 66.6667 250 0.0821 25.9953
0.0021 80.0 300 0.0725 29.5082
0.0002 93.3333 350 0.0933 26.2295
0.0 106.6667 400 0.0932 26.2295
0.0 120.0 450 0.0937 26.2295
0.0 133.3333 500 0.0940 26.2295
0.0 146.6667 550 0.0942 26.2295
0.0 160.0 600 0.0944 25.9953
0.0 173.3333 650 0.0947 25.9953
0.0 186.6667 700 0.0946 25.9953
0.0 200.0 750 0.0947 25.9953
0.0 213.3333 800 0.0948 25.9953
0.0 226.6667 850 0.0950 25.9953
0.0 240.0 900 0.0950 25.9953
0.0 253.3333 950 0.0952 25.9953
0.0 266.6667 1000 0.0952 25.9953

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
764M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for vkunchur19/whisper-medium-konnakol-rests

Finetuned
(589)
this model

Evaluation results