whisper-medium-konnakol-rests
This model is a fine-tuned version of openai/whisper-medium on the audiofolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0952
- Wer: 25.9953
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.6638 | 13.3333 | 50 | 0.0648 | 50.5855 |
0.0132 | 26.6667 | 100 | 0.0678 | 40.7494 |
0.0068 | 40.0 | 150 | 0.0794 | 30.6792 |
0.0033 | 53.3333 | 200 | 0.0909 | 28.3372 |
0.0008 | 66.6667 | 250 | 0.0821 | 25.9953 |
0.0021 | 80.0 | 300 | 0.0725 | 29.5082 |
0.0002 | 93.3333 | 350 | 0.0933 | 26.2295 |
0.0 | 106.6667 | 400 | 0.0932 | 26.2295 |
0.0 | 120.0 | 450 | 0.0937 | 26.2295 |
0.0 | 133.3333 | 500 | 0.0940 | 26.2295 |
0.0 | 146.6667 | 550 | 0.0942 | 26.2295 |
0.0 | 160.0 | 600 | 0.0944 | 25.9953 |
0.0 | 173.3333 | 650 | 0.0947 | 25.9953 |
0.0 | 186.6667 | 700 | 0.0946 | 25.9953 |
0.0 | 200.0 | 750 | 0.0947 | 25.9953 |
0.0 | 213.3333 | 800 | 0.0948 | 25.9953 |
0.0 | 226.6667 | 850 | 0.0950 | 25.9953 |
0.0 | 240.0 | 900 | 0.0950 | 25.9953 |
0.0 | 253.3333 | 950 | 0.0952 | 25.9953 |
0.0 | 266.6667 | 1000 | 0.0952 | 25.9953 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for vkunchur19/whisper-medium-konnakol-rests
Base model
openai/whisper-medium