jeffreygao commited on
Commit
56a9f40
1 Parent(s): 2b67598

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ language:
4
+ - zh
5
+ - en
6
+ ---
7
+ # BlueLM
8
+
9
+ <p align="center">
10
+ 🖥 <a href="https://github.com/vivo-ai-lab/BlueLM" target="_blank">github</a> • 📜 <a href="MODEL_LICENSE.pdf" target="_blank">LICENSE</a> • 🎯 <a href="https://developers.vivo.com/product/ai/bluelm" target="_blank">vivo Developers</a>
11
+ </p>
12
+
13
+ ## 模型介绍/Introduction
14
+
15
+ BlueLM 是由 vivo AI 全球研究院自主研发的大规模预训练语言模型,本次发布包含 7B 基础模型和 7B 对话模型,同时我们开源了支持 **32K** 的长文本基础模型和对话模型。
16
+
17
+ - **更大量的优质数据**:高质量语料库进行训练,规模达到了 **2.6 万亿** 的 token 数,该语料库包含中文、英文以及少量日韩数据。
18
+ - **更优的效果**:其中 BlueLM-7B-Chat 在 **C-Eval** 和 **CMMLU** 上均取得领先结果,对比同尺寸开源模型中具有较强的竞争力。
19
+ - **长文本支持**:BlueLM-7B-Base-32K 和 BlueLM-7B-Chat-32K 均支持 **32K** 长文本,在保持基础能力相当情况下,能够支持更长上下文理解。
20
+ - **协议说明**:BlueLM 系列欢迎开发者进行学术研究和商业应用。
21
+
22
+ BlueLM is a large-scale open-source language model independently developed by the vivo AI Lab. This release includes 2K and 32K context length versions for both Base and Chat models.
23
+
24
+ - **High-quality Data**: BlueLM is trained on a high-quality data with 2.6 trillion tokens. Our train corpus contains Chinese, English, Japanese and Korean data.
25
+ - **Stronger Performance**: BlueLM-7B-Chat achieves the best performance in C-Eval and CMMLU benchmarks of the same size.
26
+ - **Longer Context**: We have extended the context length of both BlueLM-7B-Base-32K and BlueLM-7B-Chat-32K models from 2K to 32K. The models can support longer context understanding while maintaining the same basic capabilities.
27
+ - **Model License**: BlueLM weights are open for academic research and commercial use.
28
+
29
+ 本次发布基座模型下载链接见:
30
+
31
+ The release versions and hugging face download links are listed in the table below:
32
+
33
+ | | Base Model | Chat Model | 4bits Quantized Chat Model |
34
+ |:---:|:--------------------:|:--------------------:|:--------------------------:|
35
+ | 7B | [BlueLM-7B-Base](https://huggingface.co/vivo-ai/BlueLM-7B-Base) | [BlueLM-7B-Chat](https://huggingface.co/vivo-ai/BlueLM-7B-Chat) | [BlueLM-7B-Chat-4bits](https://huggingface.co/vivo-ai/BlueLM-7B-Chat-4bits) |
36
+ | 7B-32K | [BlueLM-7B-Base-32K](https://huggingface.co/vivo-ai/BlueLM-7B-Base-32K) | [BlueLM-7B-Chat-32K](https://huggingface.co/vivo-ai/BlueLM-7B-Chat-32K) | - |
37
+
38
+ ## 推理部署/Inference and Deployment
39
+
40
+ ```python
41
+ >>> from transformers import AutoModelForCausalLM, AutoTokenizer
42
+ >>> tokenizer = AutoTokenizer.from_pretrained("vivo-ai/BlueLM-7B-Base", trust_remote_code=True, use_fast=False)
43
+ >>> model = AutoModelForCausalLM.from_pretrained("vivo-ai/BlueLM-7B-Base", device_map="cuda:0", trust_remote_code=True)
44
+ >>> model = model.eval()
45
+ >>> inputs = tokenizer("儒林外史->吴敬梓\n隋唐演义->褚人获\n红楼梦->", return_tensors="pt")
46
+ >>> inputs = inputs.to("cuda:0")
47
+ >>> pred = model.generate(**inputs, max_new_tokens=64, repetition_penalty=1.1)
48
+ >>> print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
49
+ 儒林外史->吴敬梓
50
+ 隋唐演义->褚人获
51
+ 红楼梦->曹雪芹
52
+ 三国演义->罗贯中
53
+ 水浒传->施耐庵
54
+ 西游记->吴承恩
55
+ 聊斋志异->蒲松龄
56
+ 封神演义->许仲琳
57
+ 东周列国志->冯梦龙
58
+ 三侠五义->石玉昆
59
+ 七剑十三侠->唐芸洲
60
+ ```
61
+
62
+ 更多使用说明,请参考我们的 [Github 仓库](https://github.com/vivo-ai-lab/BlueLM).
63
+
64
+ For more instructions, please refer to our [Github Repo](https://github.com/vivo-ai-lab/BlueLM).
65
+
66
+ ## 协议/License
67
+
68
+ Our code is licensed under the [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0) and [Community License for BlueLM Model](MODEL_LICENSE_EN.pdf).