BlueLM
🖥 github • 📜 LICENSE • 🎯 vivo Developers • 🗨 WeChat
模型介绍/Introduction
BlueLM 是由 vivo AI 全球研究院自主研发的大规模预训练语言模型,本次发布包含 7B 基础模型和 7B 对话模型,同时我们开源了支持 32K 的长文本基础模型和对话模型。
- 更大量的优质数据:高质量语料库进行训练,规模达到了 2.6 万亿 的 token 数,该语料库包含中文、英文以及少量日韩数据。
- 更优的效果:其中 BlueLM-7B-Chat 在 C-Eval 和 CMMLU 上均取得领先结果,对比同尺寸开源模型中具有较强的竞争力。
- 长文本支持:BlueLM-7B-Base-32K 和 BlueLM-7B-Chat-32K 均支持 32K 长文本,在保持基础能力相当情况下,能够支持更长上下文理解。
- 协议说明:BlueLM 系列欢迎开发者进行学术研究和商业应用。
BlueLM is a large-scale open-source language model independently developed by the vivo AI Lab. This release includes 2K and 32K context length versions for both Base and Chat models.
- High-quality Data: BlueLM is trained on a high-quality data with 2.6 trillion tokens. Our train corpus mainly consists of Chinese and English data, with a small amount of Japanese and Korean data.
- Stronger Performance: BlueLM-7B-Chat achieves a strong competitive performance in C-Eval and CMMLU benchmarks of the same size.
- Longer Context: We have extended the context length of both BlueLM-7B-Base-32K and BlueLM-7B-Chat-32K models from 2K to 32K. The models can support longer context understanding while maintaining the same basic capabilities.
- Model License: BlueLM weights are open for academic research and commercial use.
本次发布基座模型下载链接见:
The release versions and hugging face download links are listed in the table below:
Base Model | Chat Model | 4bits Quantized Chat Model | |
---|---|---|---|
7B-2k | BlueLM-7B-Base | BlueLM-7B-Chat | BlueLM-7B-Chat-4bits |
7B-32K | BlueLM-7B-Base-32K | BlueLM-7B-Chat-32K | BlueLM-7B-Chat-32K-AWQ / BlueLM-7B-Chat-32K-GPTQ |
评测结果/Benchmark Results
为了保证模型评测的一致性,我们采用 OpenCompass 进行相关榜单的评测。我们分别在 C-Eval、MMLU、CMMLU、GaoKao、AGIEval、BBH、GSM8K、MATH 和 HumanEval 榜单对 BlueLM 的通用能力、数学能力和代码能力进行了测试。
To ensure the consistency of model evaluation, we use OpenCompass to evaluate the performance on relevant leaderboards. We conducted extensive tests on C-Eval, MMLU, CMMLU, GaoKao, AGIEval, BBH, GSM8K, MATH and HumanEval datasets across general ability, mathematical ability and coding ability.
Model | C-Eval | MMLU | CMMLU | Gaokao | AGIEval | BBH | GSM8K | MATH | HumanEval |
---|---|---|---|---|---|---|---|---|---|
5-shot | 5-shot | 5-shot | 0-shot | 0-shot | 3-shot | 4-shot | 5-shot | 0-shot | |
GPT-4 | 69.9 | 86.4 | 71.2 | 72.3 | 55.1 | 86.7 | 91.4 | 45.8 | 74.4 |
ChatGPT | 52.5 | 70.0 | 53.9 | 51.1 | 39.9 | 70.1 | 78.2 | 28 | 73.2 |
LLaMA2-7B | 32.5 | 45.3 | 31.8 | 18.9 | 21.8 | 38.2 | 16.7 | 3.3 | 12.8 |
ChatGLM2-6B(Base) | 51.7 | 47.9 | 50.0 | - | - | 33.7 | 32.4 | 6.5 | - |
Baichuan2-7B | 56.3 | 54.7 | 57.0 | 34.8 | 34.6 | 41.8 | 24.6 | 5.4 | 17.7 |
BlueLM-7B-Base | 67.5 | 55.2 | 66.6 | 58.9 | 43.4 | 41.7 | 27.2 | 6.2 | 18.3 |
BlueLM-7B-Chat | 72.7 | 50.7 | 74.2 | 48.7 | 43.4 | 65.6 | 51.9 | 13.4 | 21.3 |
推理部署/Inference and Deployment
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("vivo-ai/BlueLM-7B-Base", trust_remote_code=True, use_fast=False)
>>> model = AutoModelForCausalLM.from_pretrained("vivo-ai/BlueLM-7B-Base", device_map="cuda:0", torch_dtype=torch.bfloat16, trust_remote_code=True)
>>> model = model.eval()
>>> inputs = tokenizer("儒林外史->吴敬梓\n隋唐演义->褚人获\n红楼梦->", return_tensors="pt")
>>> inputs = inputs.to("cuda:0")
>>> pred = model.generate(**inputs, max_new_tokens=64, repetition_penalty=1.1)
>>> print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
儒林外史->吴敬梓
隋唐演义->褚人获
红楼梦->曹雪芹
三国演义->罗贯中
水浒传->施耐庵
西游记->吴承恩
聊斋志异->蒲松龄
封神演义->许仲琳
东周列国志->冯梦龙
三言二拍->冯梦龙
官场现形记->李宝嘉
更多使用说明,请参考我们的 Github 仓库。
For more instructions, please refer to our Github Repo.
协议/License
社区使用代码依照 Apache-2.0 协议开源,且使用 BlueLM 模型权重需要遵循 vivo_BlueLM模型许可协议。
Our code is licensed under the Apache-2.0 and Community License for BlueLM Model.
- Downloads last month
- 75