|
--- |
|
tags: |
|
- clip |
|
library_name: open_clip |
|
pipeline_tag: zero-shot-image-classification |
|
license: cc-by-nc-4.0 |
|
datasets: |
|
- visheratin/laion-coco-nllb |
|
--- |
|
|
|
## Model Summary |
|
|
|
NLLB-SigLIP-MRL is a model that combines a text encoder from the [NLLB model](https://huggingface.co/facebook/nllb-200-distilled-600M) and an image encoder from the |
|
[SigLIP](https://huggingface.co/timm/ViT-B-16-SigLIP-384) model. This allows us to extend the model capabilities |
|
to 201 languages of the Flores-200. This version of the model was trained using a variation of [Matryoshka Representation learning](https://arxiv.org/abs/2205.13147) |
|
to enable the generation of embeddings of sizes [32, 64, 128, 256, 512] in addition to the original 768. Based on the benchmarks below, embeddings of sizes 256 and 512 |
|
preserve 90%+ of the full embedding quality. |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/609ede05121df5de54007033/PP5GJOgM2YVQM4RSWHKtq.png) |
|
|
|
The full embedding model sets new state-of-the-art for multilingual image and text retrieval on both XTD10 and Crossmodal-3600. |
|
|
|
| Dataset | image retrieval R@1, avg | text retrieval R@1, avg | image retrieval R@5, avg | text retrieval R@5, avg | image retrieval R@10, avg | text retrieval R@10, avg | |
|
|-----------------|:------------------------:|:------------------:|:-------------------:|:------------------:|:--------------------:|:-------------------:| |
|
| Crossmodal-3600 | 0.6079 | 0.5741 | 0.8333 | 0.8174 | 0.8922 | 0.8816 | |
|
| XTD10 | 0.6997 | 0.6433 | 0.8988 | 0.8848 | 0.9503 | 0.9449 | |
|
|
|
## How to use |
|
|
|
### Variable resolutions |
|
|
|
<a target="_blank" href="https://colab.research.google.com/drive/1gYKUm3urhhHapaFbJ6GD1Fl3pI5g-fjM"> |
|
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> |
|
</a> |
|
|
|
If you want to use the model that supports variable embedding sizes, you can do it as follows: |
|
|
|
``` |
|
!pip install -U transformers open_clip_torch |
|
``` |
|
|
|
``` |
|
from transformers import AutoModel |
|
from PIL import Image |
|
import requests |
|
import torch |
|
|
|
model = AutoModel.from_pretrained("visheratin/nllb-siglip-mrl-base", device="cpu", trust_remote_code=True) |
|
|
|
image_path = "https://huggingface.co/spaces/jjourney1125/swin2sr/resolve/main/samples/butterfly.jpg" |
|
image = Image.open(requests.get(image_path, stream=True).raw) |
|
|
|
class_options = ["бабочка", "butterfly", "kat"] |
|
class_langs = ["rus_Cyrl", "eng_Latn", "afr_Latn"] |
|
|
|
image_logits, text_logits = model.get_logits( |
|
images=[image], |
|
texts=class_options, |
|
langs=class_langs, |
|
resolution=512 # set resolution here or set `None` to use the original resolution |
|
) |
|
|
|
print(torch.softmax(image_logits, dim=1)) |
|
``` |
|
|
|
### OpenCLIP |
|
|
|
This model is also integrated into OpenCLIP so that you can use it as any other model: |
|
|
|
``` |
|
!pip install -U open_clip_torch |
|
``` |
|
|
|
``` |
|
from open_clip import create_model_from_pretrained, get_tokenizer |
|
from PIL import Image |
|
import requests |
|
import torch |
|
|
|
model, transform = create_model_from_pretrained("nllb-clip-base-siglip", "mrl", device="cuda") |
|
|
|
tokenizer = get_tokenizer("nllb-clip-base-siglip") |
|
|
|
class_options = ["бабочка", "butterfly", "kat"] |
|
class_langs = ["rus_Cyrl", "eng_Latn", "afr_Latn"] |
|
|
|
text_inputs = [] |
|
for i in range(len(class_options)): |
|
tokenizer.set_language(class_langs[i]) |
|
text_inputs.append(tokenizer(class_options[i])) |
|
text_inputs = torch.stack(text_inputs).squeeze(1).to("cuda") |
|
|
|
image_path = "https://huggingface.co/spaces/jjourney1125/swin2sr/resolve/main/samples/butterfly.jpg" |
|
image = Image.open(requests.get(image_path, stream=True).raw) |
|
|
|
image_inputs = transform(image).unsqueeze(0).to("cuda") |
|
|
|
with torch.inference_mode(): |
|
logits_per_image, logits_per_text = model.get_logits(image_inputs, text_inputs) |
|
|
|
print(logits_per_image.softmax(dim=-1)) |
|
``` |
|
|
|
## Acknowledgements |
|
|
|
I thank [ML Collective](https://mlcollective.org/) for providing Google Cloud compute resources. |
|
|