Edit model card

SentenceTransformer based on BAAI/bge-base-en-v1.5

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("vineet10/fm")
# Run inference
sentences = [
    'The term of this Agreement shall continue until terminated by either party in accordance with',
    'What is the term of the Agreement?',
    'What events constitute Force Majeure under this Agreement?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.3333
cosine_accuracy@3 0.3333
cosine_accuracy@5 0.3333
cosine_accuracy@10 0.6667
cosine_precision@1 0.3333
cosine_precision@3 0.1111
cosine_precision@5 0.0667
cosine_precision@10 0.0667
cosine_recall@1 0.3333
cosine_recall@3 0.3333
cosine_recall@5 0.3333
cosine_recall@10 0.6667
cosine_ndcg@10 0.4337
cosine_mrr@10 0.3704
cosine_map@100 0.3862

Information Retrieval

Metric Value
cosine_accuracy@1 0.3333
cosine_accuracy@3 0.3333
cosine_accuracy@5 0.3333
cosine_accuracy@10 0.6667
cosine_precision@1 0.3333
cosine_precision@3 0.1111
cosine_precision@5 0.0667
cosine_precision@10 0.0667
cosine_recall@1 0.3333
cosine_recall@3 0.3333
cosine_recall@5 0.3333
cosine_recall@10 0.6667
cosine_ndcg@10 0.4337
cosine_mrr@10 0.3704
cosine_map@100 0.387

Information Retrieval

Metric Value
cosine_accuracy@1 0.3333
cosine_accuracy@3 0.3333
cosine_accuracy@5 0.3333
cosine_accuracy@10 0.6667
cosine_precision@1 0.3333
cosine_precision@3 0.1111
cosine_precision@5 0.0667
cosine_precision@10 0.0667
cosine_recall@1 0.3333
cosine_recall@3 0.3333
cosine_recall@5 0.3333
cosine_recall@10 0.6667
cosine_ndcg@10 0.4337
cosine_mrr@10 0.3704
cosine_map@100 0.3879

Information Retrieval

Metric Value
cosine_accuracy@1 0.3333
cosine_accuracy@3 0.3333
cosine_accuracy@5 0.3333
cosine_accuracy@10 1.0
cosine_precision@1 0.3333
cosine_precision@3 0.1111
cosine_precision@5 0.0667
cosine_precision@10 0.1
cosine_recall@1 0.3333
cosine_recall@3 0.3333
cosine_recall@5 0.3333
cosine_recall@10 1.0
cosine_ndcg@10 0.5524
cosine_mrr@10 0.4259
cosine_map@100 0.4259

Information Retrieval

Metric Value
cosine_accuracy@1 0.3333
cosine_accuracy@3 0.6667
cosine_accuracy@5 0.6667
cosine_accuracy@10 0.6667
cosine_precision@1 0.3333
cosine_precision@3 0.2222
cosine_precision@5 0.1333
cosine_precision@10 0.0667
cosine_recall@1 0.3333
cosine_recall@3 0.6667
cosine_recall@5 0.6667
cosine_recall@10 0.6667
cosine_ndcg@10 0.5
cosine_mrr@10 0.4444
cosine_map@100 0.4701

Training Details

Training Dataset

Unnamed Dataset

  • Size: 26 training samples
  • Columns: context and question
  • Approximate statistics based on the first 1000 samples:
    context question
    type string string
    details
    • min: 2 tokens
    • mean: 19.19 tokens
    • max: 28 tokens
    • min: 4 tokens
    • mean: 11.27 tokens
    • max: 18 tokens
  • Samples:
    context question
    Answer: Deepak Babbar makes the final payment of Rs 2,60,000 at the time of quashing FIR MOU?
    This Agreement is governed by the laws of Indiana, and any disputes arising out of or in Which law governs this Agreement, and where would disputes be resolved?
    Answer: After the first motion, both parties must file petitions for quashing FIRs and according to the MOU?
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0 0 0.4259 0.3879 0.3870 0.4701 0.3862

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.4
  • PyTorch: 2.3.1+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
0
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for vineet10/fm

Finetuned
(254)
this model

Evaluation results