token_fine_tunned_flipkart_2_gl7

This model is a fine-tuned version of vinayak361/token_fine_tunned_flipkart_2_gl on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7179
  • Precision: 0.7122
  • Recall: 0.7571
  • F1: 0.7340
  • Accuracy: 0.7485

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 135 1.0392 0.6634 0.7121 0.6869 0.6982
No log 2.0 270 0.8567 0.6697 0.7128 0.6906 0.7093
No log 3.0 405 0.8102 0.6707 0.7204 0.6947 0.7146
0.9223 4.0 540 0.7840 0.6860 0.7363 0.7103 0.7253
0.9223 5.0 675 0.7668 0.6886 0.7301 0.7088 0.7267
0.9223 6.0 810 0.7543 0.6886 0.7329 0.7100 0.7301
0.9223 7.0 945 0.7501 0.6997 0.7384 0.7185 0.7340
0.708 8.0 1080 0.7383 0.6949 0.7426 0.7180 0.7335
0.708 9.0 1215 0.7360 0.7030 0.7453 0.7235 0.7379
0.708 10.0 1350 0.7319 0.7048 0.7453 0.7245 0.7389
0.708 11.0 1485 0.7306 0.7052 0.7467 0.7254 0.7398
0.6327 12.0 1620 0.7220 0.7049 0.7488 0.7262 0.7413
0.6327 13.0 1755 0.7198 0.7059 0.7509 0.7277 0.7432
0.6327 14.0 1890 0.7203 0.7108 0.7585 0.7338 0.7481
0.5954 15.0 2025 0.7193 0.7118 0.7571 0.7337 0.7481
0.5954 16.0 2160 0.7175 0.7122 0.7585 0.7346 0.7476
0.5954 17.0 2295 0.7176 0.7144 0.7599 0.7364 0.7481
0.5954 18.0 2430 0.7183 0.7153 0.7599 0.7369 0.7490
0.5699 19.0 2565 0.7173 0.7122 0.7571 0.7340 0.7485
0.5699 20.0 2700 0.7179 0.7122 0.7571 0.7340 0.7485

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0+cu102
  • Datasets 2.2.2
  • Tokenizers 0.12.1
Downloads last month
16
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.