Đà mã 2 (Llama2 architecture)
Dama2 is an autoregressive Large Language Model (LLM), based on Llama2's model architecture. Dama2 was trained on part of the Common Crawl dataset in Vietnamese and English.
Details will be available soon.
To contact us, mail to: [email protected] (Lê Anh Cường) | [email protected] (Hiếu)
How to use
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("vietgpt/dama-2-7b")
model = AutoModelForCausalLM.from_pretrained("vietgpt/dama-2-7b", low_cpu_mem_usage=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
prompt = "Địa chỉ trường Đại học Tôn Đức Thắng nằm ở số"
input_ids = tokenizer(prompt, return_tensors="pt")['input_ids'].to(device)
gen_tokens = model.generate(input_ids, max_length=max_length, repetition_penalty=1.1)
print(tokenizer.batch_decode(gen_tokens)[0])
{
"results": {
"lambada_vi": {
"ppl": 17.662483545322115,
"ppl_stderr": 0.46441057543941494,
"acc": 0.34159672067148156,
"acc_stderr": 0.004685401990271572
}
},
"versions": {
"lambada_vi": null
},
"config": {
"model": "hf-causal",
"model_args": "pretrained=vietgpt/dama-2-7b",
"num_fewshot": 0,
"batch_size": null,
"batch_sizes": [],
"device": "cuda:1",
"no_cache": false,
"limit": null,
"bootstrap_iters": 100000,
"description_dict": {}
}
}
hf-causal (pretrained=vietgpt/dama-2-7b), limit: None, provide_description: False, num_fewshot: 0, batch_size: None
| Task |Version|Metric| Value | |Stderr|
|----------|-------|------|------:|---|-----:|
|lambada_vi| |ppl |17.6625|± |0.4644|
| | |acc | 0.3416|± |0.0047|
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train vietgpt/dama-2-7b
Spaces using vietgpt/dama-2-7b 2
Evaluation results
- Perplexity on ViLambadatest set self-reported6.951
- SacreBLEU on English to Vietnamese Formal/Informal translationtest set self-reported26.300