Visual Document Retrieval
Transformers
Safetensors
ColPali
English
colqwen2
Inference Endpoints
colqwen2-v1.0-hf / README.md
tonywu71's picture
Update README.md
0c6d075 verified
---
library_name: transformers
tags:
- colpali
license: apache-2.0
datasets:
- vidore/colpali_train_set
language:
- en
base_model:
- vidore/colqwen2-base
pipeline_tag: visual-document-retrieval
---
> [!WARNING]
> EXPERIMENTAL: Wait for https://github.com/huggingface/transformers/pull/35778 to be merged before using!
> [!IMPORTANT]
> This version of ColQwen2 should be loaded with the `transformers 🤗` release, not with `colpali-engine`.
> It was converted using the `convert_colqwen2_weights_to_hf.py` script
> from the [`vidore/colqwen2-v1.0-merged`](https://huggingface.co/vidore/colqwen2-v1.0-merged) checkpoint.
# ColQwen2: Visual Retriever based on Qwen2-VL-2B-Instruct with ColBERT strategy
ColQwen2 is a model based on a novel model architecture and training strategy based on Vision Language Models (VLMs) to efficiently index documents from their visual features.
It is a [Qwen2-VL-2B](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) extension that generates [ColBERT](https://arxiv.org/abs/2004.12832)- style multi-vector representations of text and images.
It was introduced in the paper [ColPali: Efficient Document Retrieval with Vision Language Models](https://arxiv.org/abs/2407.01449) and first released in [this repository](https://github.com/ManuelFay/colpali)
<p align="center"><img width=800 src="https://github.com/illuin-tech/colpali/blob/main/assets/colpali_architecture.webp?raw=true"/></p>
The HuggingFace `transformers` 🤗 implementation was contributed by Tony Wu ([@tonywu71](https://huggingface.co/tonywu71)) and Yoni Gozlan ([@yonigozlan](https://huggingface.co/yonigozlan)).
## Model Description
Read the `transformers` 🤗 model card: https://huggingface.co/docs/transformers/en/model_doc/colqwen2.
## Model Training
### Dataset
Our training dataset of 127,460 query-page pairs is comprised of train sets of openly available academic datasets (63%) and a synthetic dataset made up of pages from web-crawled PDF documents and augmented with VLM-generated (Claude-3 Sonnet) pseudo-questions (37%).
Our training set is fully English by design, enabling us to study zero-shot generalization to non-English languages. We explicitly verify no multi-page PDF document is used both [*ViDoRe*](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d) and in the train set to prevent evaluation contamination.
A validation set is created with 2% of the samples to tune hyperparameters.
## Usage
```python
import torch
from PIL import Image
from transformers import ColQwen2ForRetrieval, ColQwen2Processor
from transformers.utils.import_utils import is_flash_attn_2_available
model_name = "vidore/colqwen2-v1.0-hf"
model = ColQwen2ForRetrieval.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="cuda:0", # or "mps" if on Apple Silicon
attn_implementation="flash_attention_2" if is_flash_attn_2_available() else None,
).eval()
processor = ColQwen2Processor.from_pretrained(model_name)
# Your inputs (replace dummy images with screenshots of your documents)
images = [
Image.new("RGB", (128, 128), color="white"),
Image.new("RGB", (64, 32), color="black"),
]
queries = [
"What is the organizational structure for our R&D department?",
"Can you provide a breakdown of last year’s financial performance?",
]
# Process the inputs
batch_images = processor(images=images).to(model.device)
batch_queries = processor(text=queries).to(model.device)
# Forward pass
with torch.no_grad():
image_embeddings = model(**batch_images).embeddings
query_embeddings = model(**batch_queries).embeddings
# Score the queries against the images
scores = processor.score_retrieval(query_embeddings, image_embeddings)
```
## Limitations
- **Focus**: The model primarily focuses on PDF-type documents and high-ressources languages, potentially limiting its generalization to other document types or less represented languages.
- **Support**: The model relies on multi-vector retreiving derived from the ColBERT late interaction mechanism, which may require engineering efforts to adapt to widely used vector retrieval frameworks that lack native multi-vector support.
## License
ColQwen2's vision language backbone model (Qwen2-VL) is under `apache-2.0` license. ColQwen2 inherits from this `apache-2.0` license.
## Contact
- Manuel Faysse: [email protected]
- Hugues Sibille: [email protected]
- Tony Wu: [email protected]
## Citation
If you use any datasets or models from this organization in your research, please cite the original dataset as follows:
```bibtex
@misc{faysse2024colpaliefficientdocumentretrieval,
title={ColPali: Efficient Document Retrieval with Vision Language Models},
author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
year={2024},
eprint={2407.01449},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2407.01449},
}
```