venetis's picture
update model card README.md
ec92805
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: bert-base-uncased-finetuned-3d-sentiment
    results: []

bert-base-uncased-finetuned-3d-sentiment

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9271
  • Accuracy: 0.7392
  • Precision: 0.7455
  • Recall: 0.7392
  • F1: 0.7394

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 6381
  • num_epochs: 7
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.8443 1.0 1595 0.8265 0.6659 0.6920 0.6659 0.6629
0.6037 2.0 3190 0.7380 0.7021 0.7207 0.7021 0.7014
0.516 3.0 4785 0.6740 0.7246 0.7337 0.7246 0.7234
0.4269 4.0 6380 0.7221 0.7290 0.7383 0.7290 0.7271
0.3149 5.0 7975 0.8368 0.7237 0.7422 0.7237 0.7230
0.1996 6.0 9570 0.9271 0.7392 0.7455 0.7392 0.7394
0.1299 7.0 11165 1.1062 0.7358 0.7461 0.7358 0.7361

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.10.1
  • Tokenizers 0.13.3