|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: distilbart-cnn-12-6-summarization_final_labeled_data |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbart-cnn-12-6-summarization_final_labeled_data |
|
|
|
This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1308 |
|
- Rouge1: 71.046 |
|
- Rouge2: 59.5936 |
|
- Rougel: 66.5089 |
|
- Rougelsum: 69.5863 |
|
- Gen Len: 120.08 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| No log | 1.0 | 99 | 0.4590 | 49.5947 | 32.0274 | 39.973 | 47.0858 | 124.54 | |
|
| No log | 2.0 | 198 | 0.2493 | 53.1348 | 36.2418 | 43.9192 | 50.68 | 120.1 | |
|
| No log | 3.0 | 297 | 0.1645 | 63.4779 | 49.8803 | 57.8773 | 62.0455 | 116.12 | |
|
| No log | 4.0 | 396 | 0.1344 | 68.4348 | 55.6375 | 63.3955 | 66.2623 | 124.84 | |
|
| No log | 5.0 | 495 | 0.1308 | 71.046 | 59.5936 | 66.5089 | 69.5863 | 120.08 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- Pytorch 1.11.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|