wav2vec2-base-finetuned-gtzan

This model is a fine-tuned version of facebook/wav2vec2-base on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2095
  • Accuracy: 0.7867

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0746 1.0 107 1.9697 0.46
1.5843 2.0 214 1.5908 0.5067
1.5982 3.0 321 1.4385 0.58
1.2855 4.0 428 1.3906 0.5467
1.0562 5.0 535 1.0173 0.7
0.8919 6.0 642 0.9564 0.6733
0.7214 7.0 749 0.8906 0.7467
0.7624 8.0 856 0.9580 0.7467
0.3619 9.0 963 1.0685 0.7733
0.3814 10.0 1070 1.1847 0.7467
0.4371 11.0 1177 0.9630 0.7867
0.3186 12.0 1284 0.9635 0.82
0.1474 13.0 1391 1.0021 0.8333
0.0918 14.0 1498 1.4497 0.7533
0.0592 15.0 1605 1.2592 0.7733
0.0084 16.0 1712 1.2656 0.7867
0.0216 17.0 1819 1.2095 0.7867

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
17
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for vapari/wav2vec2-base-finetuned-gtzan

Finetuned
(693)
this model

Dataset used to train vapari/wav2vec2-base-finetuned-gtzan

Evaluation results