Note

This is a replica of the official repository, intended solely for research purposes to replicate results. If there are any copyright issues, please contact me.

πŸ€— HF Repo β€’πŸ± Github Repo β€’ 🐦 Twitter β€’ πŸ“ƒ [WizardLM] β€’ πŸ“ƒ [WizardCoder] β€’ πŸ“ƒ [WizardMath]

πŸ‘‹ Join our Discord

News

  • πŸ”₯πŸ”₯πŸ”₯[2023/08/26] We released WizardCoder-Python-34B-V1.0 , which achieves the 73.2 pass@1 and surpasses GPT4 (2023/03/15), ChatGPT-3.5, and Claude2 on the HumanEval Benchmarks.
  • [2023/06/16] We released WizardCoder-15B-V1.0 , which achieves the 57.3 pass@1 and surpasses Claude-Plus (+6.8), Bard (+15.3) and InstructCodeT5+ (+22.3) on the HumanEval Benchmarks.

❗Note: There are two HumanEval results of GPT4 and ChatGPT-3.5. The 67.0 and 48.1 are reported by the official GPT4 Report (2023/03/15) of OpenAI. The 82.0 and 72.5 are tested by ourselves with the latest API (2023/08/26).

Model Checkpoint Paper HumanEval MBPP Demo License
WizardCoder-Python-34B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardCoder] 73.2 61.2 Demo Llama2
WizardCoder-15B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardCoder] 59.8 50.6 -- OpenRAIL-M
WizardCoder-Python-13B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardCoder] 64.0 55.6 -- Llama2
WizardCoder-Python-7B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardCoder] 55.5 51.6 Demo Llama2
WizardCoder-3B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardCoder] 34.8 37.4 -- OpenRAIL-M
WizardCoder-1B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardCoder] 23.8 28.6 -- OpenRAIL-M
  • Our WizardMath-70B-V1.0 model slightly outperforms some closed-source LLMs on the GSM8K, including ChatGPT 3.5, Claude Instant 1 and PaLM 2 540B.
  • Our WizardMath-70B-V1.0 model achieves 81.6 pass@1 on the GSM8k Benchmarks, which is 24.8 points higher than the SOTA open-source LLM, and achieves 22.7 pass@1 on the MATH Benchmarks, which is 9.2 points higher than the SOTA open-source LLM.
Model Checkpoint Paper GSM8k MATH Online Demo License
WizardMath-70B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardMath] 81.6 22.7 Demo Llama 2
WizardMath-13B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardMath] 63.9 14.0 Demo Llama 2
WizardMath-7B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardMath] 54.9 10.7 Demo Llama 2
Model Checkpoint Paper MT-Bench AlpacaEval GSM8k HumanEval License
WizardLM-70B-V1.0 πŸ€— HF Link πŸ“ƒComing Soon 7.78 92.91% 77.6% 50.6 Llama 2 License
WizardLM-13B-V1.2 πŸ€— HF Link 7.06 89.17% 55.3% 36.6 Llama 2 License
WizardLM-13B-V1.1 πŸ€— HF Link 6.76 86.32% 25.0 Non-commercial
WizardLM-30B-V1.0 πŸ€— HF Link 7.01 37.8 Non-commercial
WizardLM-13B-V1.0 πŸ€— HF Link 6.35 75.31% 24.0 Non-commercial
WizardLM-7B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardLM] 19.1 Non-commercial

Comparing WizardCoder-Python-34B-V1.0 with Other LLMs.

πŸ”₯ The following figure shows that our WizardCoder-Python-34B-V1.0 attains the second position in this benchmark, surpassing GPT4 (2023/03/15, 73.2 vs. 67.0), ChatGPT-3.5 (73.2 vs. 72.5) and Claude2 (73.2 vs. 71.2).

WizardCoder

Prompt Format

"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"

Inference Demo Script

We provide the inference demo code here.

Note: This script supports WizardLM/WizardCoder-Python-34B/13B/7B-V1.0. If you want to inference with WizardLM/WizardCoder-15B/3B/1B-V1.0, please change the stop_tokens = ['</s>'] to stop_tokens = ['<|endoftext|>'] in the script.

Citation

Please cite the repo if you use the data, method or code in this repo.

@article{luo2023wizardcoder,
  title={WizardCoder: Empowering Code Large Language Models with Evol-Instruct},
  author={Luo, Ziyang and Xu, Can and Zhao, Pu and Sun, Qingfeng and Geng, Xiubo and Hu, Wenxiang and Tao, Chongyang and Ma, Jing and Lin, Qingwei and Jiang, Daxin},
  journal={arXiv preprint arXiv:2306.08568},
  year={2023}
}
Downloads last month
19
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including vanillaOVO/WizardCoder-Python-13B-V1.0

Evaluation results