|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/swin-small-patch4-window7-224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: swin-small-patch4-window7-224-finetuned-isic217 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.5454545454545454 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# swin-small-patch4-window7-224-finetuned-isic217 |
|
|
|
This model is a fine-tuned version of [microsoft/swin-small-patch4-window7-224](https://huggingface.co/microsoft/swin-small-patch4-window7-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9417 |
|
- Accuracy: 0.5455 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-------:|:----:|:---------------:|:--------:| |
|
| 2.1844 | 0.9796 | 24 | 2.1103 | 0.1364 | |
|
| 2.0018 | 2.0 | 49 | 1.8737 | 0.2727 | |
|
| 1.6474 | 2.9796 | 73 | 1.9019 | 0.2727 | |
|
| 1.3757 | 4.0 | 98 | 1.7487 | 0.3636 | |
|
| 1.1526 | 4.9796 | 122 | 1.7576 | 0.4091 | |
|
| 0.9161 | 6.0 | 147 | 1.5886 | 0.5 | |
|
| 0.7568 | 6.9796 | 171 | 1.8935 | 0.4545 | |
|
| 0.4024 | 8.0 | 196 | 1.6767 | 0.4545 | |
|
| 0.814 | 8.9796 | 220 | 1.7112 | 0.3636 | |
|
| 0.4346 | 10.0 | 245 | 1.9364 | 0.4091 | |
|
| 0.3456 | 10.9796 | 269 | 1.9417 | 0.5455 | |
|
| 0.228 | 12.0 | 294 | 2.1569 | 0.4091 | |
|
| 0.1681 | 12.9796 | 318 | 2.0565 | 0.4545 | |
|
| 0.1498 | 14.0 | 343 | 2.0701 | 0.3636 | |
|
| 0.1599 | 14.9796 | 367 | 2.4973 | 0.5 | |
|
| 0.3856 | 16.0 | 392 | 2.2473 | 0.4545 | |
|
| 0.2529 | 16.9796 | 416 | 2.0918 | 0.4545 | |
|
| 0.0557 | 18.0 | 441 | 1.9596 | 0.5455 | |
|
| 0.0895 | 18.9796 | 465 | 2.5522 | 0.4545 | |
|
| 0.0719 | 20.0 | 490 | 2.2938 | 0.5 | |
|
| 0.0764 | 20.9796 | 514 | 2.6754 | 0.4545 | |
|
| 0.1301 | 22.0 | 539 | 2.5287 | 0.4545 | |
|
| 0.1205 | 22.9796 | 563 | 2.7532 | 0.4091 | |
|
| 0.1013 | 24.0 | 588 | 2.6988 | 0.4545 | |
|
| 0.0777 | 24.9796 | 612 | 2.9345 | 0.4091 | |
|
| 0.1807 | 26.0 | 637 | 2.9981 | 0.4545 | |
|
| 0.0298 | 26.9796 | 661 | 2.8549 | 0.4545 | |
|
| 0.0589 | 28.0 | 686 | 2.6967 | 0.4545 | |
|
| 0.0896 | 28.9796 | 710 | 2.6903 | 0.4545 | |
|
| 0.0218 | 29.3878 | 720 | 2.6902 | 0.4545 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.0.dev0 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|