Edit model card

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.76
  • Accuracy: 0.88

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 - .train_test_split(seed=2024, shuffle=True, test_size=0.1)

Training results

Training Loss Epoch Step Accuracy Validation Loss
1.9415 1.0 113 0.55 1.8500
1.3078 2.0 226 0.58 1.3794
1.1238 3.0 339 0.65 1.0919
0.788 4.0 452 0.68 1.0212
0.5932 5.0 565 0.69 0.8691
0.4042 6.0 678 0.71 0.8527
0.3421 7.0 791 0.75 0.7737
0.223 8.0 904 0.75 0.8463
0.1162 9.0 1017 0.77 0.7808
0.0863 10.0 1130 0.75 0.7487
0.1357 11.0 1243 0.8839 0.76
0.0632 12.0 1356 0.7509 0.76
0.0342 13.0 1469 0.8219 0.77
0.0277 14.0 1582 0.7691 0.8
0.0307 15.0 1695 0.7854 0.77

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.2
  • Datasets 2.16.1
  • Tokenizers 0.13.2
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train van-ng/distilhubert-finetuned-gtzan

Evaluation results