mbart-large-50-finetuned-lrsum-fr

This model is a fine-tuned version of facebook/mbart-large-50 on the lr-sum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0341
  • Rouge1: 0.2579
  • Rouge2: 0.1232
  • Rougel: 0.2142
  • Rougelsum: 0.2153

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
1.8023 1.0 141 1.2331 0.2511 0.115 0.205 0.2088
8.3626 2.0 282 1.3380 0.2601 0.1213 0.2106 0.2155
0.848 3.0 423 1.5333 0.2431 0.1109 0.2008 0.2022
0.4302 4.0 564 1.4443 0.2487 0.1153 0.204 0.2063
0.2181 5.0 705 1.6967 0.2445 0.1081 0.1977 0.2001
0.1131 6.0 846 1.8275 0.2704 0.1358 0.2249 0.2265
0.052 7.0 987 1.9579 0.2549 0.1161 0.2085 0.2099
0.0245 8.0 1128 2.0341 0.2579 0.1232 0.2142 0.2153

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
17
Safetensors
Model size
611M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for valdem/mbart-large-50-finetuned-lrsum-fr

Finetuned
(134)
this model

Evaluation results