speaker-segmentation-fine-tuned-Redio-Audio-hi

This model is a fine-tuned version of pyannote/segmentation-3.0 on the Suraj0599/Radio_Audio1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2799
  • Der: 0.0247
  • False Alarm: 0.0078
  • Missed Detection: 0.0043
  • Confusion: 0.0126

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 100.0

Training results

Training Loss Epoch Step Validation Loss Der False Alarm Missed Detection Confusion
0.1187 1.0 225 0.0986 0.0238 0.0077 0.0007 0.0154
0.102 2.0 450 0.0933 0.0227 0.0076 0.0008 0.0142
0.093 3.0 675 0.0917 0.0221 0.0075 0.0010 0.0136
0.0837 4.0 900 0.0867 0.0221 0.0075 0.0015 0.0130
0.0738 5.0 1125 0.0963 0.0224 0.0074 0.0015 0.0135
0.0697 6.0 1350 0.0884 0.0215 0.0075 0.0011 0.0129
0.06 7.0 1575 0.0969 0.0215 0.0074 0.0016 0.0125
0.0587 8.0 1800 0.0999 0.0209 0.0074 0.0013 0.0122
0.0536 9.0 2025 0.1006 0.0219 0.0072 0.0019 0.0128
0.0502 10.0 2250 0.1045 0.0214 0.0073 0.0017 0.0123
0.0442 11.0 2475 0.1016 0.0235 0.0072 0.0029 0.0134
0.0453 12.0 2700 0.1100 0.0226 0.0072 0.0018 0.0136
0.044 13.0 2925 0.1049 0.0211 0.0072 0.0019 0.0121
0.04 14.0 3150 0.1109 0.0210 0.0071 0.0024 0.0115
0.0441 15.0 3375 0.1142 0.0226 0.0072 0.0029 0.0125
0.0381 16.0 3600 0.1178 0.0227 0.0073 0.0038 0.0117
0.0387 17.0 3825 0.1236 0.0208 0.0071 0.0026 0.0112
0.0319 18.0 4050 0.1198 0.0228 0.0075 0.0032 0.0122
0.033 19.0 4275 0.1126 0.0222 0.0073 0.0033 0.0116
0.0345 20.0 4500 0.1233 0.0225 0.0074 0.0037 0.0115
0.0321 21.0 4725 0.1252 0.0227 0.0076 0.0037 0.0114
0.0294 22.0 4950 0.1279 0.0230 0.0075 0.0038 0.0117
0.027 23.0 5175 0.1289 0.0232 0.0075 0.0040 0.0116
0.0281 24.0 5400 0.1289 0.0223 0.0078 0.0030 0.0115
0.0269 25.0 5625 0.1308 0.0228 0.0076 0.0042 0.0111
0.027 26.0 5850 0.1339 0.0231 0.0079 0.0025 0.0127
0.0261 27.0 6075 0.1336 0.0227 0.0072 0.0040 0.0114
0.025 28.0 6300 0.1493 0.0238 0.0077 0.0029 0.0131
0.0237 29.0 6525 0.1379 0.0231 0.0077 0.0034 0.0120
0.0225 30.0 6750 0.1535 0.0227 0.0074 0.0037 0.0117
0.0211 31.0 6975 0.1472 0.0228 0.0079 0.0035 0.0114
0.0225 32.0 7200 0.1499 0.0239 0.0077 0.0040 0.0123
0.0218 33.0 7425 0.1500 0.0246 0.0076 0.0051 0.0119
0.0205 34.0 7650 0.1574 0.0237 0.0076 0.0041 0.0120
0.0216 35.0 7875 0.1497 0.0224 0.0076 0.0041 0.0107
0.0189 36.0 8100 0.1712 0.0235 0.0076 0.0047 0.0113
0.0176 37.0 8325 0.1653 0.0219 0.0076 0.0037 0.0105
0.0189 38.0 8550 0.1599 0.0225 0.0071 0.0042 0.0112
0.0172 39.0 8775 0.1835 0.0238 0.0078 0.0032 0.0128
0.0185 40.0 9000 0.2006 0.0228 0.0074 0.0027 0.0127
0.0173 41.0 9225 0.1776 0.0229 0.0077 0.0039 0.0113
0.0159 42.0 9450 0.1728 0.0239 0.0076 0.0050 0.0112
0.0166 43.0 9675 0.1831 0.0238 0.0074 0.0039 0.0124
0.0158 44.0 9900 0.1915 0.0238 0.0072 0.0040 0.0125
0.0172 45.0 10125 0.1902 0.0246 0.0074 0.0042 0.0130
0.0145 46.0 10350 0.1842 0.0247 0.0074 0.0050 0.0122
0.0138 47.0 10575 0.1852 0.0238 0.0076 0.0047 0.0116
0.0152 48.0 10800 0.1875 0.0254 0.0075 0.0048 0.0131
0.0136 49.0 11025 0.2112 0.0244 0.0078 0.0044 0.0123
0.0137 50.0 11250 0.2049 0.0254 0.0075 0.0050 0.0129
0.0122 51.0 11475 0.2080 0.0245 0.0079 0.0036 0.0131
0.012 52.0 11700 0.2170 0.0253 0.0077 0.0046 0.0131
0.0114 53.0 11925 0.2221 0.0248 0.0074 0.0047 0.0127
0.0121 54.0 12150 0.2182 0.0240 0.0072 0.0041 0.0128
0.0123 55.0 12375 0.2091 0.0255 0.0075 0.0048 0.0131
0.0135 56.0 12600 0.2091 0.0249 0.0074 0.0051 0.0124
0.0113 57.0 12825 0.2074 0.0253 0.0076 0.0056 0.0121
0.0117 58.0 13050 0.2265 0.0250 0.0080 0.0047 0.0124
0.0115 59.0 13275 0.2364 0.0256 0.0081 0.0041 0.0134
0.0108 60.0 13500 0.2397 0.0259 0.0078 0.0047 0.0135
0.01 61.0 13725 0.2453 0.0250 0.0078 0.0043 0.0128
0.0104 62.0 13950 0.2465 0.0243 0.0075 0.0041 0.0126
0.01 63.0 14175 0.2495 0.0250 0.0079 0.0040 0.0131
0.0094 64.0 14400 0.2442 0.0255 0.0079 0.0043 0.0133
0.0098 65.0 14625 0.2485 0.0257 0.0079 0.0042 0.0136
0.0094 66.0 14850 0.2431 0.0255 0.0078 0.0045 0.0133
0.0091 67.0 15075 0.2518 0.0253 0.0078 0.0045 0.0130
0.0094 68.0 15300 0.2492 0.0250 0.0076 0.0039 0.0135
0.0095 69.0 15525 0.2444 0.0257 0.0077 0.0040 0.0139
0.0107 70.0 15750 0.2525 0.0248 0.0078 0.0038 0.0132
0.0094 71.0 15975 0.2415 0.0254 0.0077 0.0043 0.0133
0.0087 72.0 16200 0.2436 0.0252 0.0078 0.0042 0.0131
0.0086 73.0 16425 0.2546 0.0250 0.0077 0.0043 0.0130
0.0085 74.0 16650 0.2508 0.0253 0.0077 0.0043 0.0133
0.0081 75.0 16875 0.2587 0.0248 0.0078 0.0039 0.0131
0.0081 76.0 17100 0.2556 0.0250 0.0077 0.0043 0.0129
0.008 77.0 17325 0.2600 0.0250 0.0077 0.0044 0.0129
0.0081 78.0 17550 0.2650 0.0248 0.0078 0.0041 0.0129
0.0079 79.0 17775 0.2585 0.0247 0.0078 0.0044 0.0126
0.0075 80.0 18000 0.2620 0.0251 0.0077 0.0045 0.0129
0.008 81.0 18225 0.2721 0.0251 0.0078 0.0043 0.0130
0.0077 82.0 18450 0.2672 0.0246 0.0077 0.0042 0.0127
0.007 83.0 18675 0.2647 0.0250 0.0078 0.0043 0.0129
0.0078 84.0 18900 0.2787 0.0248 0.0078 0.0042 0.0128
0.0078 85.0 19125 0.2775 0.0250 0.0078 0.0041 0.0131
0.0075 86.0 19350 0.2768 0.0246 0.0077 0.0042 0.0127
0.0072 87.0 19575 0.2798 0.0247 0.0078 0.0042 0.0127
0.0069 88.0 19800 0.2764 0.0247 0.0078 0.0043 0.0126
0.0069 89.0 20025 0.2770 0.0248 0.0078 0.0043 0.0127
0.007 90.0 20250 0.2801 0.0248 0.0078 0.0042 0.0128
0.0073 91.0 20475 0.2800 0.0247 0.0078 0.0042 0.0127
0.0071 92.0 20700 0.2814 0.0247 0.0077 0.0043 0.0127
0.0077 93.0 20925 0.2799 0.0247 0.0078 0.0043 0.0126
0.0071 94.0 21150 0.2808 0.0247 0.0078 0.0043 0.0126
0.0073 95.0 21375 0.2798 0.0247 0.0078 0.0043 0.0126
0.0074 96.0 21600 0.2797 0.0247 0.0078 0.0043 0.0126
0.0071 97.0 21825 0.2798 0.0247 0.0078 0.0043 0.0126
0.0067 98.0 22050 0.2799 0.0247 0.0078 0.0043 0.0126
0.0073 99.0 22275 0.2799 0.0247 0.0078 0.0043 0.0126
0.0069 100.0 22500 0.2799 0.0247 0.0078 0.0043 0.0126

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.3.0+cu118
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
12
Safetensors
Model size
1.47M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for vaibhavchavan/speaker-segmentation-fine-tuned-Redio-Audio-hi

Finetuned
(40)
this model

Dataset used to train vaibhavchavan/speaker-segmentation-fine-tuned-Redio-Audio-hi