speaker-segmentation-fine-tuned-Redio-Audio-hi
This model is a fine-tuned version of pyannote/segmentation-3.0 on the Suraj0599/Radio_Audio1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2799
- Der: 0.0247
- False Alarm: 0.0078
- Missed Detection: 0.0043
- Confusion: 0.0126
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 100.0
Training results
Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion |
---|---|---|---|---|---|---|---|
0.1187 | 1.0 | 225 | 0.0986 | 0.0238 | 0.0077 | 0.0007 | 0.0154 |
0.102 | 2.0 | 450 | 0.0933 | 0.0227 | 0.0076 | 0.0008 | 0.0142 |
0.093 | 3.0 | 675 | 0.0917 | 0.0221 | 0.0075 | 0.0010 | 0.0136 |
0.0837 | 4.0 | 900 | 0.0867 | 0.0221 | 0.0075 | 0.0015 | 0.0130 |
0.0738 | 5.0 | 1125 | 0.0963 | 0.0224 | 0.0074 | 0.0015 | 0.0135 |
0.0697 | 6.0 | 1350 | 0.0884 | 0.0215 | 0.0075 | 0.0011 | 0.0129 |
0.06 | 7.0 | 1575 | 0.0969 | 0.0215 | 0.0074 | 0.0016 | 0.0125 |
0.0587 | 8.0 | 1800 | 0.0999 | 0.0209 | 0.0074 | 0.0013 | 0.0122 |
0.0536 | 9.0 | 2025 | 0.1006 | 0.0219 | 0.0072 | 0.0019 | 0.0128 |
0.0502 | 10.0 | 2250 | 0.1045 | 0.0214 | 0.0073 | 0.0017 | 0.0123 |
0.0442 | 11.0 | 2475 | 0.1016 | 0.0235 | 0.0072 | 0.0029 | 0.0134 |
0.0453 | 12.0 | 2700 | 0.1100 | 0.0226 | 0.0072 | 0.0018 | 0.0136 |
0.044 | 13.0 | 2925 | 0.1049 | 0.0211 | 0.0072 | 0.0019 | 0.0121 |
0.04 | 14.0 | 3150 | 0.1109 | 0.0210 | 0.0071 | 0.0024 | 0.0115 |
0.0441 | 15.0 | 3375 | 0.1142 | 0.0226 | 0.0072 | 0.0029 | 0.0125 |
0.0381 | 16.0 | 3600 | 0.1178 | 0.0227 | 0.0073 | 0.0038 | 0.0117 |
0.0387 | 17.0 | 3825 | 0.1236 | 0.0208 | 0.0071 | 0.0026 | 0.0112 |
0.0319 | 18.0 | 4050 | 0.1198 | 0.0228 | 0.0075 | 0.0032 | 0.0122 |
0.033 | 19.0 | 4275 | 0.1126 | 0.0222 | 0.0073 | 0.0033 | 0.0116 |
0.0345 | 20.0 | 4500 | 0.1233 | 0.0225 | 0.0074 | 0.0037 | 0.0115 |
0.0321 | 21.0 | 4725 | 0.1252 | 0.0227 | 0.0076 | 0.0037 | 0.0114 |
0.0294 | 22.0 | 4950 | 0.1279 | 0.0230 | 0.0075 | 0.0038 | 0.0117 |
0.027 | 23.0 | 5175 | 0.1289 | 0.0232 | 0.0075 | 0.0040 | 0.0116 |
0.0281 | 24.0 | 5400 | 0.1289 | 0.0223 | 0.0078 | 0.0030 | 0.0115 |
0.0269 | 25.0 | 5625 | 0.1308 | 0.0228 | 0.0076 | 0.0042 | 0.0111 |
0.027 | 26.0 | 5850 | 0.1339 | 0.0231 | 0.0079 | 0.0025 | 0.0127 |
0.0261 | 27.0 | 6075 | 0.1336 | 0.0227 | 0.0072 | 0.0040 | 0.0114 |
0.025 | 28.0 | 6300 | 0.1493 | 0.0238 | 0.0077 | 0.0029 | 0.0131 |
0.0237 | 29.0 | 6525 | 0.1379 | 0.0231 | 0.0077 | 0.0034 | 0.0120 |
0.0225 | 30.0 | 6750 | 0.1535 | 0.0227 | 0.0074 | 0.0037 | 0.0117 |
0.0211 | 31.0 | 6975 | 0.1472 | 0.0228 | 0.0079 | 0.0035 | 0.0114 |
0.0225 | 32.0 | 7200 | 0.1499 | 0.0239 | 0.0077 | 0.0040 | 0.0123 |
0.0218 | 33.0 | 7425 | 0.1500 | 0.0246 | 0.0076 | 0.0051 | 0.0119 |
0.0205 | 34.0 | 7650 | 0.1574 | 0.0237 | 0.0076 | 0.0041 | 0.0120 |
0.0216 | 35.0 | 7875 | 0.1497 | 0.0224 | 0.0076 | 0.0041 | 0.0107 |
0.0189 | 36.0 | 8100 | 0.1712 | 0.0235 | 0.0076 | 0.0047 | 0.0113 |
0.0176 | 37.0 | 8325 | 0.1653 | 0.0219 | 0.0076 | 0.0037 | 0.0105 |
0.0189 | 38.0 | 8550 | 0.1599 | 0.0225 | 0.0071 | 0.0042 | 0.0112 |
0.0172 | 39.0 | 8775 | 0.1835 | 0.0238 | 0.0078 | 0.0032 | 0.0128 |
0.0185 | 40.0 | 9000 | 0.2006 | 0.0228 | 0.0074 | 0.0027 | 0.0127 |
0.0173 | 41.0 | 9225 | 0.1776 | 0.0229 | 0.0077 | 0.0039 | 0.0113 |
0.0159 | 42.0 | 9450 | 0.1728 | 0.0239 | 0.0076 | 0.0050 | 0.0112 |
0.0166 | 43.0 | 9675 | 0.1831 | 0.0238 | 0.0074 | 0.0039 | 0.0124 |
0.0158 | 44.0 | 9900 | 0.1915 | 0.0238 | 0.0072 | 0.0040 | 0.0125 |
0.0172 | 45.0 | 10125 | 0.1902 | 0.0246 | 0.0074 | 0.0042 | 0.0130 |
0.0145 | 46.0 | 10350 | 0.1842 | 0.0247 | 0.0074 | 0.0050 | 0.0122 |
0.0138 | 47.0 | 10575 | 0.1852 | 0.0238 | 0.0076 | 0.0047 | 0.0116 |
0.0152 | 48.0 | 10800 | 0.1875 | 0.0254 | 0.0075 | 0.0048 | 0.0131 |
0.0136 | 49.0 | 11025 | 0.2112 | 0.0244 | 0.0078 | 0.0044 | 0.0123 |
0.0137 | 50.0 | 11250 | 0.2049 | 0.0254 | 0.0075 | 0.0050 | 0.0129 |
0.0122 | 51.0 | 11475 | 0.2080 | 0.0245 | 0.0079 | 0.0036 | 0.0131 |
0.012 | 52.0 | 11700 | 0.2170 | 0.0253 | 0.0077 | 0.0046 | 0.0131 |
0.0114 | 53.0 | 11925 | 0.2221 | 0.0248 | 0.0074 | 0.0047 | 0.0127 |
0.0121 | 54.0 | 12150 | 0.2182 | 0.0240 | 0.0072 | 0.0041 | 0.0128 |
0.0123 | 55.0 | 12375 | 0.2091 | 0.0255 | 0.0075 | 0.0048 | 0.0131 |
0.0135 | 56.0 | 12600 | 0.2091 | 0.0249 | 0.0074 | 0.0051 | 0.0124 |
0.0113 | 57.0 | 12825 | 0.2074 | 0.0253 | 0.0076 | 0.0056 | 0.0121 |
0.0117 | 58.0 | 13050 | 0.2265 | 0.0250 | 0.0080 | 0.0047 | 0.0124 |
0.0115 | 59.0 | 13275 | 0.2364 | 0.0256 | 0.0081 | 0.0041 | 0.0134 |
0.0108 | 60.0 | 13500 | 0.2397 | 0.0259 | 0.0078 | 0.0047 | 0.0135 |
0.01 | 61.0 | 13725 | 0.2453 | 0.0250 | 0.0078 | 0.0043 | 0.0128 |
0.0104 | 62.0 | 13950 | 0.2465 | 0.0243 | 0.0075 | 0.0041 | 0.0126 |
0.01 | 63.0 | 14175 | 0.2495 | 0.0250 | 0.0079 | 0.0040 | 0.0131 |
0.0094 | 64.0 | 14400 | 0.2442 | 0.0255 | 0.0079 | 0.0043 | 0.0133 |
0.0098 | 65.0 | 14625 | 0.2485 | 0.0257 | 0.0079 | 0.0042 | 0.0136 |
0.0094 | 66.0 | 14850 | 0.2431 | 0.0255 | 0.0078 | 0.0045 | 0.0133 |
0.0091 | 67.0 | 15075 | 0.2518 | 0.0253 | 0.0078 | 0.0045 | 0.0130 |
0.0094 | 68.0 | 15300 | 0.2492 | 0.0250 | 0.0076 | 0.0039 | 0.0135 |
0.0095 | 69.0 | 15525 | 0.2444 | 0.0257 | 0.0077 | 0.0040 | 0.0139 |
0.0107 | 70.0 | 15750 | 0.2525 | 0.0248 | 0.0078 | 0.0038 | 0.0132 |
0.0094 | 71.0 | 15975 | 0.2415 | 0.0254 | 0.0077 | 0.0043 | 0.0133 |
0.0087 | 72.0 | 16200 | 0.2436 | 0.0252 | 0.0078 | 0.0042 | 0.0131 |
0.0086 | 73.0 | 16425 | 0.2546 | 0.0250 | 0.0077 | 0.0043 | 0.0130 |
0.0085 | 74.0 | 16650 | 0.2508 | 0.0253 | 0.0077 | 0.0043 | 0.0133 |
0.0081 | 75.0 | 16875 | 0.2587 | 0.0248 | 0.0078 | 0.0039 | 0.0131 |
0.0081 | 76.0 | 17100 | 0.2556 | 0.0250 | 0.0077 | 0.0043 | 0.0129 |
0.008 | 77.0 | 17325 | 0.2600 | 0.0250 | 0.0077 | 0.0044 | 0.0129 |
0.0081 | 78.0 | 17550 | 0.2650 | 0.0248 | 0.0078 | 0.0041 | 0.0129 |
0.0079 | 79.0 | 17775 | 0.2585 | 0.0247 | 0.0078 | 0.0044 | 0.0126 |
0.0075 | 80.0 | 18000 | 0.2620 | 0.0251 | 0.0077 | 0.0045 | 0.0129 |
0.008 | 81.0 | 18225 | 0.2721 | 0.0251 | 0.0078 | 0.0043 | 0.0130 |
0.0077 | 82.0 | 18450 | 0.2672 | 0.0246 | 0.0077 | 0.0042 | 0.0127 |
0.007 | 83.0 | 18675 | 0.2647 | 0.0250 | 0.0078 | 0.0043 | 0.0129 |
0.0078 | 84.0 | 18900 | 0.2787 | 0.0248 | 0.0078 | 0.0042 | 0.0128 |
0.0078 | 85.0 | 19125 | 0.2775 | 0.0250 | 0.0078 | 0.0041 | 0.0131 |
0.0075 | 86.0 | 19350 | 0.2768 | 0.0246 | 0.0077 | 0.0042 | 0.0127 |
0.0072 | 87.0 | 19575 | 0.2798 | 0.0247 | 0.0078 | 0.0042 | 0.0127 |
0.0069 | 88.0 | 19800 | 0.2764 | 0.0247 | 0.0078 | 0.0043 | 0.0126 |
0.0069 | 89.0 | 20025 | 0.2770 | 0.0248 | 0.0078 | 0.0043 | 0.0127 |
0.007 | 90.0 | 20250 | 0.2801 | 0.0248 | 0.0078 | 0.0042 | 0.0128 |
0.0073 | 91.0 | 20475 | 0.2800 | 0.0247 | 0.0078 | 0.0042 | 0.0127 |
0.0071 | 92.0 | 20700 | 0.2814 | 0.0247 | 0.0077 | 0.0043 | 0.0127 |
0.0077 | 93.0 | 20925 | 0.2799 | 0.0247 | 0.0078 | 0.0043 | 0.0126 |
0.0071 | 94.0 | 21150 | 0.2808 | 0.0247 | 0.0078 | 0.0043 | 0.0126 |
0.0073 | 95.0 | 21375 | 0.2798 | 0.0247 | 0.0078 | 0.0043 | 0.0126 |
0.0074 | 96.0 | 21600 | 0.2797 | 0.0247 | 0.0078 | 0.0043 | 0.0126 |
0.0071 | 97.0 | 21825 | 0.2798 | 0.0247 | 0.0078 | 0.0043 | 0.0126 |
0.0067 | 98.0 | 22050 | 0.2799 | 0.0247 | 0.0078 | 0.0043 | 0.0126 |
0.0073 | 99.0 | 22275 | 0.2799 | 0.0247 | 0.0078 | 0.0043 | 0.0126 |
0.0069 | 100.0 | 22500 | 0.2799 | 0.0247 | 0.0078 | 0.0043 | 0.0126 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.3.0+cu118
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 12
Model tree for vaibhavchavan/speaker-segmentation-fine-tuned-Redio-Audio-hi
Base model
pyannote/segmentation-3.0