|
import torch |
|
|
|
from packaging import version |
|
import importlib.metadata |
|
|
|
from transformers import LlamaModel, LlamaForCausalLM, LlamaPreTrainedModel, LlamaConfig |
|
from transformers.models.llama.modeling_llama import ( |
|
LlamaDecoderLayer, |
|
LlamaAttention, |
|
LlamaFlashAttention2, |
|
LlamaSdpaAttention, |
|
LlamaMLP, |
|
LlamaRMSNorm, |
|
LlamaRotaryEmbedding, |
|
) |
|
|
|
from torch import nn |
|
from transformers.utils import logging |
|
from transformers.cache_utils import Cache, StaticCache |
|
|
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
from transformers.utils.import_utils import _is_package_available |
|
|
|
from peft import PeftModel |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def is_transformers_attn_greater_or_equal_4_43_1(): |
|
if not _is_package_available("transformers"): |
|
return False |
|
|
|
return version.parse(importlib.metadata.version("transformers")) >= version.parse( |
|
"4.43.1" |
|
) |
|
|
|
|
|
class ModifiedLlamaAttention(LlamaAttention): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.is_causal = False |
|
|
|
|
|
class ModifiedLlamaFlashAttention2(LlamaFlashAttention2): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.is_causal = False |
|
|
|
|
|
class ModifiedLlamaSdpaAttention(LlamaSdpaAttention): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.is_causal = False |
|
|
|
|
|
LLAMA_ATTENTION_CLASSES = { |
|
"eager": ModifiedLlamaAttention, |
|
"flash_attention_2": ModifiedLlamaFlashAttention2, |
|
"sdpa": ModifiedLlamaSdpaAttention, |
|
} |
|
|
|
|
|
class ModifiedLlamaDecoderLayer(LlamaDecoderLayer): |
|
def __init__(self, config: LlamaConfig, layer_idx: int): |
|
nn.Module.__init__(self) |
|
self.hidden_size = config.hidden_size |
|
|
|
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation]( |
|
config=config, layer_idx=layer_idx |
|
) |
|
|
|
self.mlp = LlamaMLP(config) |
|
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = LlamaRMSNorm( |
|
config.hidden_size, eps=config.rms_norm_eps |
|
) |
|
|
|
|
|
class LlamaEncoderModel(LlamaModel): |
|
_no_split_modules = ["ModifiedLlamaDecoderLayer"] |
|
|
|
def __init__(self, config: LlamaConfig): |
|
if not is_transformers_attn_greater_or_equal_4_43_1(): |
|
raise ValueError( |
|
"The current implementation of LlamaEncoderModel follows modeling_llama.py of transformers version >= 4.43.1" |
|
) |
|
LlamaPreTrainedModel.__init__(self, config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding( |
|
config.vocab_size, config.hidden_size, self.padding_idx |
|
) |
|
self.layers = nn.ModuleList( |
|
[ |
|
ModifiedLlamaDecoderLayer(config, layer_idx) |
|
for layer_idx in range(config.num_hidden_layers) |
|
] |
|
) |
|
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.rotary_emb = LlamaRotaryEmbedding(config=config) |
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
def _update_causal_mask( |
|
self, |
|
attention_mask, |
|
input_tensor, |
|
cache_position, |
|
past_key_values: Cache, |
|
output_attentions: bool, |
|
): |
|
if self.config._attn_implementation == "flash_attention_2": |
|
if attention_mask is not None and 0.0 in attention_mask: |
|
return attention_mask |
|
return None |
|
|
|
|
|
|
|
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
using_static_cache = isinstance(past_key_values, StaticCache) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device |
|
min_dtype = torch.finfo(dtype).min |
|
sequence_length = input_tensor.shape[1] |
|
if using_static_cache: |
|
target_length = past_key_values.get_max_length() |
|
else: |
|
target_length = ( |
|
attention_mask.shape[-1] |
|
if isinstance(attention_mask, torch.Tensor) |
|
else past_seen_tokens + sequence_length + 1 |
|
) |
|
|
|
causal_mask = torch.zeros( |
|
(sequence_length, target_length), dtype=dtype, device=device |
|
) |
|
|
|
|
|
|
|
causal_mask *= torch.arange( |
|
target_length, device=device |
|
) > cache_position.reshape(-1, 1) |
|
causal_mask = causal_mask[None, None, :, :].expand( |
|
input_tensor.shape[0], 1, -1, -1 |
|
) |
|
if attention_mask is not None: |
|
causal_mask = ( |
|
causal_mask.clone() |
|
) |
|
if attention_mask.dim() == 2: |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[ |
|
:, None, None, : |
|
].eq(0.0) |
|
causal_mask[..., :mask_length] = causal_mask[ |
|
..., :mask_length |
|
].masked_fill(padding_mask, min_dtype) |
|
elif attention_mask.dim() == 4: |
|
|
|
|
|
if attention_mask.shape[-2] < cache_position[0] + sequence_length: |
|
offset = cache_position[0] |
|
else: |
|
offset = 0 |
|
mask_shape = attention_mask.shape |
|
mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype |
|
causal_mask[ |
|
: mask_shape[0], |
|
: mask_shape[1], |
|
offset : mask_shape[2] + offset, |
|
: mask_shape[3], |
|
] = mask_slice |
|
|
|
if ( |
|
self.config._attn_implementation == "sdpa" |
|
and attention_mask is not None |
|
and attention_mask.device.type == "cuda" |
|
and not output_attentions |
|
): |
|
causal_mask = AttentionMaskConverter._unmask_unattended( |
|
causal_mask, min_dtype |
|
) |
|
|
|
return causal_mask |
|
|