File size: 7,469 Bytes
1510662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch

from packaging import version
import importlib.metadata

from transformers import LlamaModel, LlamaForCausalLM, LlamaPreTrainedModel, LlamaConfig
from transformers.models.llama.modeling_llama import (
    LlamaDecoderLayer,
    LlamaAttention,
    LlamaFlashAttention2,
    LlamaSdpaAttention,
    LlamaMLP,
    LlamaRMSNorm,
    LlamaRotaryEmbedding,
)

from torch import nn
from transformers.utils import logging
from transformers.cache_utils import Cache, StaticCache

from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.utils.import_utils import _is_package_available

from peft import PeftModel

logger = logging.get_logger(__name__)


def is_transformers_attn_greater_or_equal_4_43_1():
    if not _is_package_available("transformers"):
        return False

    return version.parse(importlib.metadata.version("transformers")) >= version.parse(
        "4.43.1"
    )


class ModifiedLlamaAttention(LlamaAttention):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.is_causal = False


class ModifiedLlamaFlashAttention2(LlamaFlashAttention2):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.is_causal = False


class ModifiedLlamaSdpaAttention(LlamaSdpaAttention):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.is_causal = False


LLAMA_ATTENTION_CLASSES = {
    "eager": ModifiedLlamaAttention,
    "flash_attention_2": ModifiedLlamaFlashAttention2,
    "sdpa": ModifiedLlamaSdpaAttention,
}


class ModifiedLlamaDecoderLayer(LlamaDecoderLayer):
    def __init__(self, config: LlamaConfig, layer_idx: int):
        nn.Module.__init__(self)
        self.hidden_size = config.hidden_size

        self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](
            config=config, layer_idx=layer_idx
        )

        self.mlp = LlamaMLP(config)
        self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = LlamaRMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )


class LlamaEncoderModel(LlamaModel):
    _no_split_modules = ["ModifiedLlamaDecoderLayer"]

    def __init__(self, config: LlamaConfig):
        if not is_transformers_attn_greater_or_equal_4_43_1():
            raise ValueError(
                "The current implementation of LlamaEncoderModel follows modeling_llama.py of transformers version >= 4.43.1"
            )
        LlamaPreTrainedModel.__init__(self, config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(
            config.vocab_size, config.hidden_size, self.padding_idx
        )
        self.layers = nn.ModuleList(
            [
                ModifiedLlamaDecoderLayer(config, layer_idx)
                for layer_idx in range(config.num_hidden_layers)
            ]
        )
        self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.rotary_emb = LlamaRotaryEmbedding(config=config)
        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def _update_causal_mask(
        self,
        attention_mask,
        input_tensor,
        cache_position,
        past_key_values: Cache,
        output_attentions: bool,
    ):
        if self.config._attn_implementation == "flash_attention_2":
            if attention_mask is not None and 0.0 in attention_mask:
                return attention_mask
            return None

        # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
        # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
        # to infer the attention mask.
        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
        using_static_cache = isinstance(past_key_values, StaticCache)

        # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
        # if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
        #     if AttentionMaskConverter._ignore_causal_mask_sdpa(
        #         attention_mask,
        #         inputs_embeds=input_tensor,
        #         past_key_values_length=past_seen_tokens,
        #         is_training=self.training,
        #     ):
        #         return None

        dtype, device = input_tensor.dtype, input_tensor.device
        min_dtype = torch.finfo(dtype).min
        sequence_length = input_tensor.shape[1]
        if using_static_cache:
            target_length = past_key_values.get_max_length()
        else:
            target_length = (
                attention_mask.shape[-1]
                if isinstance(attention_mask, torch.Tensor)
                else past_seen_tokens + sequence_length + 1
            )

        causal_mask = torch.zeros(
            (sequence_length, target_length), dtype=dtype, device=device
        )  # in original implementation - torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
        # Commenting out next 2 lines to disable causal masking
        # if sequence_length != 1:
        #     causal_mask = torch.triu(causal_mask, diagonal=1)
        causal_mask *= torch.arange(
            target_length, device=device
        ) > cache_position.reshape(-1, 1)
        causal_mask = causal_mask[None, None, :, :].expand(
            input_tensor.shape[0], 1, -1, -1
        )
        if attention_mask is not None:
            causal_mask = (
                causal_mask.clone()
            )  # copy to contiguous memory for in-place edit
            if attention_mask.dim() == 2:
                mask_length = attention_mask.shape[-1]
                padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[
                    :, None, None, :
                ].eq(0.0)
                causal_mask[..., :mask_length] = causal_mask[
                    ..., :mask_length
                ].masked_fill(padding_mask, min_dtype)
            elif attention_mask.dim() == 4:
                # backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
                # cache. In that case, the 4D attention mask attends to the newest tokens only.
                if attention_mask.shape[-2] < cache_position[0] + sequence_length:
                    offset = cache_position[0]
                else:
                    offset = 0
                mask_shape = attention_mask.shape
                mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
                causal_mask[
                    : mask_shape[0],
                    : mask_shape[1],
                    offset : mask_shape[2] + offset,
                    : mask_shape[3],
                ] = mask_slice

        if (
            self.config._attn_implementation == "sdpa"
            and attention_mask is not None
            and attention_mask.device.type == "cuda"
            and not output_attentions
        ):
            causal_mask = AttentionMaskConverter._unmask_unattended(
                causal_mask, min_dtype
            )

        return causal_mask