vaibhavad commited on
Commit
1510662
1 Parent(s): 02199b4

Create modeling_llama_encoder.py

Browse files
Files changed (1) hide show
  1. modeling_llama_encoder.py +198 -0
modeling_llama_encoder.py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from packaging import version
4
+ import importlib.metadata
5
+
6
+ from transformers import LlamaModel, LlamaForCausalLM, LlamaPreTrainedModel, LlamaConfig
7
+ from transformers.models.llama.modeling_llama import (
8
+ LlamaDecoderLayer,
9
+ LlamaAttention,
10
+ LlamaFlashAttention2,
11
+ LlamaSdpaAttention,
12
+ LlamaMLP,
13
+ LlamaRMSNorm,
14
+ LlamaRotaryEmbedding,
15
+ )
16
+
17
+ from torch import nn
18
+ from transformers.utils import logging
19
+ from transformers.cache_utils import Cache, StaticCache
20
+
21
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
22
+ from transformers.utils.import_utils import _is_package_available
23
+
24
+ from peft import PeftModel
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+
29
+ def is_transformers_attn_greater_or_equal_4_43_1():
30
+ if not _is_package_available("transformers"):
31
+ return False
32
+
33
+ return version.parse(importlib.metadata.version("transformers")) >= version.parse(
34
+ "4.43.1"
35
+ )
36
+
37
+
38
+ class ModifiedLlamaAttention(LlamaAttention):
39
+ def __init__(self, *args, **kwargs):
40
+ super().__init__(*args, **kwargs)
41
+ self.is_causal = False
42
+
43
+
44
+ class ModifiedLlamaFlashAttention2(LlamaFlashAttention2):
45
+ def __init__(self, *args, **kwargs):
46
+ super().__init__(*args, **kwargs)
47
+ self.is_causal = False
48
+
49
+
50
+ class ModifiedLlamaSdpaAttention(LlamaSdpaAttention):
51
+ def __init__(self, *args, **kwargs):
52
+ super().__init__(*args, **kwargs)
53
+ self.is_causal = False
54
+
55
+
56
+ LLAMA_ATTENTION_CLASSES = {
57
+ "eager": ModifiedLlamaAttention,
58
+ "flash_attention_2": ModifiedLlamaFlashAttention2,
59
+ "sdpa": ModifiedLlamaSdpaAttention,
60
+ }
61
+
62
+
63
+ class ModifiedLlamaDecoderLayer(LlamaDecoderLayer):
64
+ def __init__(self, config: LlamaConfig, layer_idx: int):
65
+ nn.Module.__init__(self)
66
+ self.hidden_size = config.hidden_size
67
+
68
+ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](
69
+ config=config, layer_idx=layer_idx
70
+ )
71
+
72
+ self.mlp = LlamaMLP(config)
73
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
74
+ self.post_attention_layernorm = LlamaRMSNorm(
75
+ config.hidden_size, eps=config.rms_norm_eps
76
+ )
77
+
78
+
79
+ class LlamaEncoderModel(LlamaModel):
80
+ _no_split_modules = ["ModifiedLlamaDecoderLayer"]
81
+
82
+ def __init__(self, config: LlamaConfig):
83
+ if not is_transformers_attn_greater_or_equal_4_43_1():
84
+ raise ValueError(
85
+ "The current implementation of LlamaEncoderModel follows modeling_llama.py of transformers version >= 4.43.1"
86
+ )
87
+ LlamaPreTrainedModel.__init__(self, config)
88
+ self.padding_idx = config.pad_token_id
89
+ self.vocab_size = config.vocab_size
90
+
91
+ self.embed_tokens = nn.Embedding(
92
+ config.vocab_size, config.hidden_size, self.padding_idx
93
+ )
94
+ self.layers = nn.ModuleList(
95
+ [
96
+ ModifiedLlamaDecoderLayer(config, layer_idx)
97
+ for layer_idx in range(config.num_hidden_layers)
98
+ ]
99
+ )
100
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
101
+ self.rotary_emb = LlamaRotaryEmbedding(config=config)
102
+ self.gradient_checkpointing = False
103
+
104
+ # Initialize weights and apply final processing
105
+ self.post_init()
106
+
107
+ def _update_causal_mask(
108
+ self,
109
+ attention_mask,
110
+ input_tensor,
111
+ cache_position,
112
+ past_key_values: Cache,
113
+ output_attentions: bool,
114
+ ):
115
+ if self.config._attn_implementation == "flash_attention_2":
116
+ if attention_mask is not None and 0.0 in attention_mask:
117
+ return attention_mask
118
+ return None
119
+
120
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
121
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
122
+ # to infer the attention mask.
123
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
124
+ using_static_cache = isinstance(past_key_values, StaticCache)
125
+
126
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
127
+ # if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
128
+ # if AttentionMaskConverter._ignore_causal_mask_sdpa(
129
+ # attention_mask,
130
+ # inputs_embeds=input_tensor,
131
+ # past_key_values_length=past_seen_tokens,
132
+ # is_training=self.training,
133
+ # ):
134
+ # return None
135
+
136
+ dtype, device = input_tensor.dtype, input_tensor.device
137
+ min_dtype = torch.finfo(dtype).min
138
+ sequence_length = input_tensor.shape[1]
139
+ if using_static_cache:
140
+ target_length = past_key_values.get_max_length()
141
+ else:
142
+ target_length = (
143
+ attention_mask.shape[-1]
144
+ if isinstance(attention_mask, torch.Tensor)
145
+ else past_seen_tokens + sequence_length + 1
146
+ )
147
+
148
+ causal_mask = torch.zeros(
149
+ (sequence_length, target_length), dtype=dtype, device=device
150
+ ) # in original implementation - torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
151
+ # Commenting out next 2 lines to disable causal masking
152
+ # if sequence_length != 1:
153
+ # causal_mask = torch.triu(causal_mask, diagonal=1)
154
+ causal_mask *= torch.arange(
155
+ target_length, device=device
156
+ ) > cache_position.reshape(-1, 1)
157
+ causal_mask = causal_mask[None, None, :, :].expand(
158
+ input_tensor.shape[0], 1, -1, -1
159
+ )
160
+ if attention_mask is not None:
161
+ causal_mask = (
162
+ causal_mask.clone()
163
+ ) # copy to contiguous memory for in-place edit
164
+ if attention_mask.dim() == 2:
165
+ mask_length = attention_mask.shape[-1]
166
+ padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[
167
+ :, None, None, :
168
+ ].eq(0.0)
169
+ causal_mask[..., :mask_length] = causal_mask[
170
+ ..., :mask_length
171
+ ].masked_fill(padding_mask, min_dtype)
172
+ elif attention_mask.dim() == 4:
173
+ # backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
174
+ # cache. In that case, the 4D attention mask attends to the newest tokens only.
175
+ if attention_mask.shape[-2] < cache_position[0] + sequence_length:
176
+ offset = cache_position[0]
177
+ else:
178
+ offset = 0
179
+ mask_shape = attention_mask.shape
180
+ mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
181
+ causal_mask[
182
+ : mask_shape[0],
183
+ : mask_shape[1],
184
+ offset : mask_shape[2] + offset,
185
+ : mask_shape[3],
186
+ ] = mask_slice
187
+
188
+ if (
189
+ self.config._attn_implementation == "sdpa"
190
+ and attention_mask is not None
191
+ and attention_mask.device.type == "cuda"
192
+ and not output_attentions
193
+ ):
194
+ causal_mask = AttentionMaskConverter._unmask_unattended(
195
+ causal_mask, min_dtype
196
+ )
197
+
198
+ return causal_mask