File size: 4,505 Bytes
1c348c8
 
 
 
 
d6d2684
1c348c8
d6d2684
 
 
1c348c8
 
 
 
 
 
 
d6d2684
 
 
 
1c348c8
b629e33
1c348c8
d6d2684
 
1c348c8
b629e33
1c348c8
d6d2684
1c348c8
b629e33
7a01e78
b629e33
1c348c8
ad7d09f
 
 
 
 
 
b629e33
 
ad7d09f
 
 
 
 
 
b629e33
 
 
1c348c8
d6d2684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b629e33
d6d2684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b629e33
d6d2684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c348c8
 
b629e33
1c348c8
d6d2684
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
---
base_model: tokyotech-llm/Swallow-7b-hf
library_name: peft
---

# Model Info

This is a model that applies LLM2Vec to Swallow. Only the PEFT Adapter is distributed.
LLM2Vec is fine-tuned on two tasks: MNTP and SimCSE, and this repository contains the results of applying SimCSE after MNTP. 
For the MNTP Adapter, please refer to [this link](https://huggingface.co/uzabase/LLM2Vec-Llama-2-7b-hf-wikipedia-jp-mntp).

## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

- **Model type:** PEFT
- **Language(s) (NLP):** Japanese
- **License:** Apache2.0
- **Finetuned from model:** [Swallow-7b-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-hf)

### Model Sources

- **Repository:**  https://github.com/McGill-NLP/llm2vec
- **Paper:** https://arxiv.org/abs/2404.05961

# Usage

- Please see [original LLM2Vec repo](https://huggingface.co/McGill-NLP/LLM2Vec-Llama-2-7b-chat-hf-mntp-unsup-simcse#usage)

# Benchmark
- Followings are summaries. Details are [here](https://tech.uzabase.com/entry/2024/09/30/114245)
## MTEB(Japanese)

| | Classification | Clustering | PairClassification | Reranking | BitextMining | Retrieval | Sts | 平均 |
| --- | ---: | ---: | ---: | ---: | ---: |  ---: | ---: | ---: |
| Llama2-Llm2vec-eng | 0.527 | 0.258 | 0.501 | 0.217 | 0.275 | 0.296 | 0.765 | 0.408 |
| Llama2-Llm2vec-jpn | 0.570 | 0.365 | 0.510 | 0.349 | 0.470 | 0.417 | 0.795 | 0.498 |
| **Swallow-Llm2vec-jpn (This repo)** | 0.621 | 0.391 | 0.510 | 0.475 | 0.475 | 0.491 | 0.832 | 0.523 |

## MTEB(English)

| |	Classification | Clustering | Pair_Classification| Reranking | Retrieval | STS | 平均 |
| --- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Llama2-Llm2vec-eng | 0.709 | 0.386 |	0.780 |	0.588 | 0.329| 0.723 | 0.586 |
| Llama2-Llm2vec-jpn | 0.722 | 0.428 |	0.785 |	0.594 |	0.371 | 0.717 | 0.603 |
| **Swallow-Llm2vec-jpn (This repo)** |	0.695 |	0.385 |	0.751 |	0.576 |	0.318 | 0.710 | 0.572 |

# Training Details

## Training Data

- Make Corpus from SimCSE from [Wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia)
- Script for making SimCSE Corpus
```
import argparse
import random
import re
from pathlib import Path
from datasets import load_dataset
from tqdm import tqdm

def main(args):
    random.seed(args.seed)
    wiki_ds = load_dataset("wikimedia/wikipedia", "20231101.ja")
    sampled_index = random.sample(range(len(wiki_ds["train"])), args.N)
    sample_wiki = wiki_ds["train"][sampled_index]
    output_texts = []
    for title, text in tqdm(zip(sample_wiki["title"], sample_wiki["text"])):
        output_texts.append(title)
        sentences = re.split("[\n。]", text)
        for sentence in sentences:
            if len(sentence) > args.min_sentence_len: 
                output_texts.append(sentence.strip()+"。")
    with args.output_path.open(mode="w") as f:
        for line in output_texts:
            f.write(line)
            f.write("\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--N", default=200000, type=int)
    parser.add_argument("--seed", default=42, type=int)
    parser.add_argument("-o", "--output_path", type=Path)
    parser.add_argument("--min_sentence_len", default=50, type=int)

    args = parser.parse_args()
    main(args)
```
  


## Training Hyperparameter
- simcse_dropout: 0.3
- bidirectional: true
- pooling_mode: "mean"
- remove_unused_columns: false
- learning_rate: 3e-5
- loss_scale: 20
- batch_size: 256
- gradient_accumulation_steps: 1
- max_seq_length: 128
- lora_r: 16
- torch_dtype: "bfloat16"
- attn_implementation: "flash_attention_2"
- seed: 42
- bf16: true
- gradient_checkpointing: true
    

## Accelerator Settings
- deepspeed_config:
  - gradient_accumulation_steps: 1
  - gradient_clipping: 1.0
  - offload_optimizer_device: nvme
  - offload_optimizer_nvme_path: /nvme
  - zero3_save_16bit_model: true
  - zero_stage: 2 
- distributed_type: DEEPSPEED
- downcast_bf16: 'no'
- dynamo_config:
  - dynamo_backend: INDUCTOR
  - dynamo_mode: default
  - dynamo_use_dynamic: true
  - dynamo_use_fullgraph: true
- enable_cpu_affinity: false
- machine_rank: 0
- main_training_function: main
- mixed_precision: bf16
- num_machines: 1
- num_processes: 2
- rdzv_backend: static
- same_network: true
- quse_cpu: false


## Framework versions

- Python: 3.12.3
- PEFT 0.11.1
- Sentence Transformers: 3.0.1
- Transformers: 4.41.0
- PyTorch: 2.3.0
- Accelerate: 0.30.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
- MTEB: 1.13.0