h-iida commited on
Commit
d6d2684
·
verified ·
1 Parent(s): 1c348c8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +104 -175
README.md CHANGED
@@ -3,11 +3,11 @@ base_model: tokyotech-llm/Swallow-7b-hf
3
  library_name: peft
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
 
 
11
 
12
  ## Model Details
13
 
@@ -15,188 +15,117 @@ library_name: peft
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
  ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
  ### Framework versions
201
 
202
- - PEFT 0.11.1
 
 
 
 
 
 
 
 
 
3
  library_name: peft
4
  ---
5
 
6
+ # Model Info
 
 
 
7
 
8
+ This is a model that applies LLM2Vec to Swallow. Only the PEFT Adapter is distributed.
9
+ LLM2Vec is fine-tuned on two tasks: MNTP and SimCSE, and this repository contains the results of applying SimCSE after MNTP.
10
+ For the MNTP Adapter, please refer to [this link](https://huggingface.co/uzabase/LLM2Vec-Llama-2-7b-hf-wikipedia-jp-mntp).
11
 
12
  ## Model Details
13
 
 
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
+ - **Model type:** PEFT
19
+ - **Language(s) (NLP):** Japanese
20
+ - **License:** Apache2.0
21
+ - **Finetuned from model:** [Swallow-7b-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-hf)
 
 
 
 
 
22
 
23
  ### Model Sources [optional]
24
 
25
+ - **Repository:** https://github.com/McGill-NLP/llm2vec
26
+ - **Paper:** https://arxiv.org/abs/2404.05961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ ## Usage
29
 
30
+ - Please see [original LLM2Vec repo](https://huggingface.co/McGill-NLP/LLM2Vec-Llama-2-7b-chat-hf-mntp-unsup-simcse#usage)
 
 
 
 
 
 
31
 
32
  ## Training Details
33
 
34
  ### Training Data
35
 
36
+ - Make Corpus from SimCSE from [Wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia)
37
+ - Script for making SimCSE Corpus
38
+ ```
39
+ import argparse
40
+ import random
41
+ import re
42
+ from pathlib import Path
43
+ from datasets import load_dataset
44
+ from tqdm import tqdm
45
+
46
+ def main(args):
47
+ random.seed(args.seed)
48
+ wiki_ds = load_dataset("wikimedia/wikipedia", "20231101.ja")
49
+ sampled_index = random.sample(range(len(wiki_ds["train"])), args.N)
50
+ sample_wiki = wiki_ds["train"][sampled_index]
51
+ output_texts = []
52
+ for title, text in tqdm(zip(sample_wiki["title"], sample_wiki["text"])):
53
+ output_texts.append(title)
54
+ sentences = re.split("[\n。]", text)
55
+ for sentence in sentences:
56
+ if len(sentence) > args.min_sentence_len:
57
+ output_texts.append(sentence.strip()+"。")
58
+ with args.output_path.open(mode="w") as f:
59
+ for line in output_texts:
60
+ f.write(line)
61
+ f.write("\n")
62
+
63
+
64
+ if __name__ == "__main__":
65
+ parser = argparse.ArgumentParser()
66
+ parser.add_argument("--N", default=200000, type=int)
67
+ parser.add_argument("--seed", default=42, type=int)
68
+ parser.add_argument("-o", "--output_path", type=Path)
69
+ parser.add_argument("--min_sentence_len", default=50, type=int)
70
+
71
+ args = parser.parse_args()
72
+ main(args)
73
+ ```
74
+
75
+
76
+
77
+ #### Training Hyperparameter
78
+ - simcse_dropout: 0.3
79
+ - bidirectional: true
80
+ - pooling_mode: "mean"
81
+ - remove_unused_columns: false
82
+ - learning_rate: 3e-5
83
+ - loss_scale: 20
84
+ - batch_size: 256
85
+ - gradient_accumulation_steps: 1
86
+ - max_seq_length: 128
87
+ - lora_r: 16
88
+ - torch_dtype: "bfloat16"
89
+ - attn_implementation: "flash_attention_2"
90
+ - seed: 42
91
+ - bf16: true
92
+ - gradient_checkpointing: true
93
+
94
+
95
+ #### Accelerator Settings
96
+ - deepspeed_config:
97
+ - gradient_accumulation_steps: 1
98
+ - gradient_clipping: 1.0
99
+ - offload_optimizer_device: nvme
100
+ - offload_optimizer_nvme_path: /nvme
101
+ - zero3_save_16bit_model: true
102
+ - zero_stage: 2
103
+ - distributed_type: DEEPSPEED
104
+ - downcast_bf16: 'no'
105
+ - dynamo_config:
106
+ - dynamo_backend: INDUCTOR
107
+ - dynamo_mode: default
108
+ - dynamo_use_dynamic: true
109
+ - dynamo_use_fullgraph: true
110
+ - enable_cpu_affinity: false
111
+ - machine_rank: 0
112
+ - main_training_function: main
113
+ - mixed_precision: bf16
114
+ - num_machines: 1
115
+ - num_processes: 2
116
+ - rdzv_backend: static
117
+ - same_network: true
118
+ - quse_cpu: false
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
 
 
120
 
 
121
  ### Framework versions
122
 
123
+ - Python: 3.12.3
124
+ - PEFT 0.11.1
125
+ - Sentence Transformers: 3.0.1
126
+ - Transformers: 4.41.0
127
+ - PyTorch: 2.3.0
128
+ - Accelerate: 0.30.1
129
+ - Datasets: 2.20.0
130
+ - Tokenizers: 0.19.1
131
+ - MTEB: 1.13.0